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«The invention of distributions occurred in Paris,in early November 1944. The discovery was
quite sudden, taking place in a single night. I always called the night of my discovery a marvelous
night, the most beautiful night of my life. On this particular night, I felt sure of myself and filled
with a sense of exaltation. I lost no time in rushing to explain everything in detail to Cartan, who
as I mentioned earlier, lived next door. He was enthusiastic: “There you are, you’ve just resolved
all the difficulties of differentiation! Now, we’ll never again have functions without derivatives” he
told me. If a function has no (Weierstrass) derivative, then this simply means that its derivatives
are operators, but not functionsy.

Laurent Schwartz
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BASIC ALGEBRAIC CONCEPTS

1.1 | Minkowski operations in vector spaces

Let X be a vector space over K (K=R or K=C). Let A and B be subsets of X, A a subset of K.
We set

A+ B = {zeXu2x=a+0 for some (a,b) € Ax B} (1.1)
AA = {xre X :x=Xa for some (\,a) e K x A}. (1.2)
The concept is named after Hermann

We say that A+ B is the (Minkowski) sum of the sets A and B, and AA is the (Minkowski) product 1(\}“’“‘“““1‘1 (1864-1909) who was a
erman mathematician and professor at
of the set of scalars A and the set of vectors A. Note that, if A, B are vector subspaces of X then Kénigsberg, Ziirich and Gdttingen.

A+ B is a vector subspace of X as well; besides, AA= A for every A CK.

Notation. When A is a singleton set, say A= {a}, we write a + B instead of {a } + B and Aa instead
of A{a}. Similarly, if A is a singleton set, say A ={\}, we write AA instead of {\} A. Finally, we
set —A:=(—1)A and A— B:= A+ (—B). We say that A — B is the algebraic difference of the sets
A and B. With this notation, we have

A+B = UaGA(a+B)7 (13)
AA = UyephA.

It is evident that if A, B, C are subsets of X and A\ € K, then

A+B=B+A, (A+B)+C=A+(B+C),

(1.5)
AMA+B) =\A+A\B.

In other words, the Minkowski sum is commutative and associative and, when A:={\} CK is a
singleton, the product is left-distributive over the sum. Clearly, ) + A=A+ 0 =0A= A =10.

1.1. Remark. The multiplication fails to be left-distributive over the sum when A CK is not a
singleton: in general, one has A(A+ B) CAA+ AB. Also, note that the sum is not left-distributive
over the product; indeed, in general, one can only guarantee the inclusion

A+ p)ACAA+ pA. (1.6)

The equality in the previous relation does not hold even when A\ = y; thus, e.g.,, 2A C A+ A (cf.
Figure 1.1). The notion of convex set, introduced later on, guarantees the left-distributivity of the
sum over the product, i.e., the equality in the previous relation when A, ;1 > 0.

1.2. Remark. The algebraic difference A — B:={r € X2z =a —0, (a,b) € A x B} must not be
confused with the so-called Minkowski difference (or geometric difference), usually denoted by the
same symbol A — B, but defined as the set {c€ X :: ¢+ B C A}. For example, if A=[-2,2]CR and
B =[—1,1] C R then the Minkowski difference of A and B is [—1,1] whereas A — B=A+ B=[-3,3|.
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A+ A
24
/, A \\
R G S o
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24

Figure 1.1. The sum is not left-distributive over the product; indeed, in general, one can only guarantee
the inclusion (A+ pu)A CAA+ pA. Thus, in general, 2A C A+ A.

Also, A — B must not be confused with the set-theoretic difference A\ B:= AN B® which is the
relative complement of B in A, i.e., the set that contains exactly those elements belonging to A but
not to B. The set-theoretic difference A \ B is often denoted by A — B, but here we shall avoid this
use.

» Let us point out some immediate (but useful) consequences of the definition, which will be often
used in the sequel. If X and Y are vector spaces over the same field K and f: X — Y is a linear
map, then, for every ACK, A, BCX, and F,F CY we have:

FAAA)=Af(A),  f(A+B)=f(A)+ f(B), (1.7)
AfNE)C Y AE), B+ ) S fTHELE). (1.8)
Note that, in general, relations (1.8) do not hold with the equality sign. Indeed, if the relation
Af~YE)C f~Y(AE) in (1.8) holds with an equality sign for every A CK then, for A = {0}, one gets
{0} =ker f, i.e., that f isinjective. Also, if f is not surjective and f~1(E)+ f~YF) = f"YE+F)
for every E, F C Y, then there exists () # Fy C Y such that f~!(E) = 0; this implies (set E :=
Eypand F:=Y) 0= fYEy) + fY(Y)=f"YEy+Y)= f1(Y). But this cannot be the case as
{0y fH(Y).

o
» Also, if AC B then AA C AB. In particular, —A C —B. In general, it is not true that if |A| <|u]

then |\ A C |u|B; however, this is true for the so-called balanced sets defined later (cf. Proposi-
tion 1.24).

» Moreover, A\(AUB)=AAUAB and A\(AN B)=AANAB. The proof of all these assertions
is straightforward. For example, one has Af(A) =Un syeaxa{Af(2)} =Unyeaxalf(Ar)} =
F(AA).

Absorbing sets, balanced sets, convex sets
Let X be a vector space over K (K=R or K=C). Let A and B subsets of X.
1.3. Definition. We say that A is a symmetric set (with respect to the origin) if A C —A. In other

words, A is symmetric if, and only if, x € A= —x € A. Equivalently, A is symmetric if, and only if,
A=—A (if AC —A the equality holds by multiplying both sides of the inclusion by —1). =

1.4. Definition. In Euclidean geometry, a line segment is a part of a line that is bounded by two
distinct endpoints, and contains every point on the line between its endpoints. For any = € X we
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[R2 [RQ [R2

Absorbing, convex, Absorbing, not convex, Not absorbing, not convex,
not balanced not balanced balanced

Figure 1.2. Some geometric examples in R? showing the notions of absorbing set, convex set, and balanced
set. Note that a necessary condition for a set A to be balanced is that it is symmetric: —A C A.

denote by [—xz, x]x the symmetric (with respect to the origin) segment ending at z; that is
[z, 2] :={ Az 2 A €Dy} =Dex = U,ecp, {pz}, (1.9)

with D, the closed unit disk of the complex plane if K=C and D =[-1,1] if K=R. =<

Note that, for every x € X, the set [—z, 2]k is a symmetric set. Also note that for every o € K

we have

o[z, zlg=[-0ox,0x]k. (1.10)
Example 1.5. Consider X =C as a vector space over R; for z:=(1,0) we have [z, z]g =[—1, 1] x {0}. However, if X =
C is considered as a vector space over C, then [—xz, z].=D,. Eventually, note the limiting case [0, 0]g =[—0, 0] ={0}.

1.6. Definition. We say that A is balanced (or circled, or équilibrée) if it is nonempty and pA C A
for every p € K such that |p| <1. When K= C this is equivalent to say that DeA C A. In other
words, the set A is balanced whenever pv € A for every v € A and every p € D, (every pc |1, 1]r
in the real case). =<

1.7. Remark. The condition that a balanced set has to be nonempty is not so relevant. In fact, in
literature, very often, this condition is not included and, in this case, the emptyset is balanced.
However, to avoid continually writing that a property holds for a balanced set provided that it is
nonempty, we require that a balanced set is nonempty by the very definition.

1.8. Remark. Note that, in the definition of balanced set, it is possible to replace the inclusion sign
with the equality sign; that is, A is balanced if, and only if, Ds A = A (because 1 € D). Similarly, A
is symmetric if, and only if, A= —A (just multiply by —1 both sides of the inclusion A C — A). =

Note that a necessary condition for a set A to be balanced is that —A = A, i.e., that A is
symmetric (because of —1 € D,). Moreover, every balanced set A must pass through the origin,
ie., 0€ Aif A is balanced, because of 0 € D, (note that, if one allows the emptyset to be balanced,
then one has to specify that a balanced set pass through the origin provided that it is nonempty).
Actually, when K=R and A is a balanced set, given any point v € A, the set A must contain the
whole (symmetric) real segment [—v, v|g. Similarly, when K= C and A is a balanced set, given any
point v € A, the set A contains the (symmetric) complex segment [—v,v]|c. In fact, A is balanced
if, and only if, A=U,c4 (U, <1Av). Summarizing, the following geometric characterization holds.
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1.9. Proposition. Let X be a vector space over K. A set A C X is balanced if, and only if,
YveA [—v,v]gCA. (1.11)

In particualr, every balanced set is symmetric and passes through the origin.

1.10. Remark. The underlying field K plays an important role in the definition of balanced set. For
example, the symmetric segment [—1, 1|g, which is nothing but the closed interval [—1, 1] x {0} CC,
is a balanced subset of C considered as a vector space over K= R. However, the same closed interval
[—1,1] x {0} € C is no more a balanced subset of C if C is considered as a vector space over K=C.
Indeed, for p:=icD, we get p- [—1,1jg=[—i,i]r Z [-1, 1]r.

The next concept will be essential to define, later on, the notion of bounded subset in topological
vector spaces.

1.11. Definition. Let X be a vector space, A, B C X two sets. We say that A absorbs B (or that
B is absorbed by A) if there exists a Ao >0 (A\g# c0) such that AA DO B for every A € K such that
|A| = Ao. This can be expressed as

B SOy za A (1.12)

In other words, A absorbs B if there exists a A\g> 0 such that for every b € B one has b € AA for
every |\| = Ag. Note that, Ao depends both on A and B.

1.12. Remark. (A absorbs B, dual formulation) Since b € AA with A > 0 if, and only if, pb € A with
p:=A"1, we get that A absorbs B if there exists a py > 0 sufficiently small such that pb € A for
every |p| < po and every b€ B; that is, if

Ujpi<p0 0B C A (1.13)

1.13. Definition. Let X be a vector space. We say that A is absorbing (or absorbent, or radial at
the origin) if it absorbs all singletons of the space. In symbols, A is absorbing if for every z € X
there exists a A\o(x) >0 (Ao(z) # 00) such that 2z € AA for every A € K such that || > A\g(x); that is

x€n|>\‘>>\0(x) AA. (1.14)

Note that for A #0 we have z € A\A < A\~ 'z € A, therefore if K= C then A is absorbing if, and only
if, for every = € X there exists a sufficiently small disk D, , (closed disk centered at 0 € C and of
radius p > 0) such that D, ,C A. Note that any absorbing set must contain the null vector 0 € X.

1.14. Remark. (A is absorbing, dual formulation) Since = € AA if, and only if, pz € A with p:=\"1,
we get that A is absorbing if there exists a (0% )po(x) > 0 sufficiently small such that pr € A for
every |p| < po(x); that is, if

Ulpl<po(@ Loz} C A. (1.15)

1.15. Proposition. Let X be a vector space over K. A set A C X is absorbing if, and only if,
Ve e X Jpo(z) >0 = po(x) - [—z, z]g C A.

In other words, A is absorbing if, and only if, it absorbs every symmetric segment in X.

‘We stress that, in particular, pg must be
different from zero — otherwise every set
would absorb any other set.
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R? R R

Not absorbing, not balanced, Absorbing, balanced, Not absorbing, balanced,
not convex not convex convex

Figure 1.3. Some geometric examples in R? showing the notions of absorbing set, convex set, and balanced
set. Note that a necessary condition for a set A to be balanced is that —A C A.

1.18. Definition. We say that A is convex if AA + pA C A for every (nonnegative) real numbers A,
1 >0 such that A 4+ 1 =1. Note that, in the definition of convex set, it is possible to replace the
inclusion sign C with the equality sign =. Indeed, the reverse inclusion A = (A + pu)A CAA+ pA
always holds, regardless of whether A is convex or not (cf. (1.6)).

1.19. Remark. Note that the emptyset is convex. Here we are not excluding this eventuality as it

creates no exposition issues.

1.20. Remark. Note that, in considering a sum among sets we can always collect terms which have
a common factor, i.e., it is always true that AA + AB = A(A + B). However, in general, we cannot
collect terms which are scaled by different factors as in AA + pA to obtain (A + ) A. The notion of
convexity allows for that equality at least when A, ;1> 0. (cf. Proposition 1.24).

Example 1.21. » The singleton {0} of a vector space, is a balanced set because [—0, 0], ={0}. It is never absorbing
unless the vector space is trivial, i.e., X ={0} — indeed, if X # {0} and 0% x € X, then for every o >0 one has
o-[~z,z]y Z {0}. Finally, {0} is convex because any singleton is convex. If X # {0} and 0# z € X then {z} is convex,
but it is neither balanced nor absorbing because {x} does not pass through the origin.

» In a normed space, both the open and closed balls centered at the origin are absorbing, convex and balanced.

|R2 [RZ

Convex, balanced and absorbing Convex, balanced and absorbing

Figure 1.4. Some geometric examples in R? showing the notions of absorbing set, convex set, and balanced
set. Note that a necessary condition for a set A to be balanced is that —A C A.

Note that a generic element of NA + pA
has the form Aaj + pas with aj,as € A
and, in general, ai # as.
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In R? the unit ball B(c) centered at the point c:=(1/2,0) is absorbing but not balanced.

Example 1.22. » Every vector subspace of X is balanced but not necessarily absorbing. For example, consider the
vector space C(I), of all continuous and real-valued functions defined on the compact set I =[0,1] CR. The set R[z]
of all polynomial functions defined on [ is a vector subspace of C'(I) and therefore balanced. Nevertheless, it is not
absorbing. Indeed, the definition of absorbing set specializes to R[x] in C'(I) as: for every continuous function uw € C(I)
there exists a oo(u) >0 such that ou € R[x] for every |o|<oo(u). But this is clearly false because it is not the case that
every continuous function is a scalar multiple of a polynomial. It is clear how to generalize what we learned from R|z]:

1.23. Proposition. Proper subspaces of a vector space are never absorbing.

Exercise 1.5. Let X be a vector space over K and M X a proper vector subspace of X, i.e., there exists z# 0
such that = € X \ M. Prove that M is not absorbing.

Solution. If 0 # 2 € X \ M then for every |o|>0 we have ox ¢ M because M is a vector space (if oz € M then also
o Y(ox)=x € M, a contradiction).

1.24. Proposition. The following properties analyze the behavior of the notions introduced so far
with respect to the algebraic operations on X.

t. If A is a balanced set then for any A € K the rescaled set AA is balanced too and
AA=|\|A.

Moreover, if |\|<|u| then N\A=|\|AC |u|A=pA. Note that, in general, this is not true.
Think about an annulus in R

i1. Let A be a balanced set and B any subset of X. To check if A absorbs B it is then sufficient
to check if there exists a \o € K such that \gA D B. In particular: a sufficient condition
for a balanced set A to be absorbing is the existence, for every x € X, of a po(z)#+0 such
that po(x)x € A.

©1t. Let A be a subset of X. Then, A is convex if, and only if, for every \, u positive or null
one has

A+ p)A=2A+ pA.

(e]

PrROOF. i. Assume that A is balanced. Then Dg(AA) = A(DeA) = AA. This proves that \A is
balanced.

Next, recall the definition of balanced set. By assumption, A =DeA. Thus, the assertion
AA = |\|A follows from the fact that ADe = |A\|Ds for every A € K. Precisely, since A and A\A are
balanced, we have
AA =Dg(AA) = (ADe)A = (|A|De)A =|A|(DeA) = |A|A.
Moreover, if |A| <|u|#0 then [A|/|n| € Do so that %A CDeA = A, because A is balanced. That
is, [N|[AC |u|A. It follows that

A= |NAC|u|A=pA.
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#1. Suppose that A\gA O B for some )y € K. Since A is balanced, by statement %., we have that
AA D NA for every |A| = |Ao|. Hence, AA D B for every |A| > |A\g|. But this, by definition, means
that A absorbs B.

133, If (A + ) A= XA+ pA for every non-negative \, p € R then in particular, A\A+ (1 -\ A=A
for every 0 < A <1 and, therefore, A is convex. Conversely, assume that A is convex. If {\, u} ={0},
then the relation (A + p)A=AA+ pA is clearly satisfied. On the other hand, if {\, u} # {0}, we

set a: =571 and f3: :)\j: o Then, we have (recall that, in general there holds a A+ aB=«a(A+ B))
M+ pA= A+ p) (@A) + A+ p)(BA) = (A + p) (@A + BA) = (A + p) A.
The last equality follows from the convexity of A because of o, >0 and o+ =1. EENE

1.25. Proposition. Let X be a vector space over K. The following assertions hold:
t. The intersection of a finite number of absorbing sets in X is still an absorbing set in X.

1. The intersection of a family (no cardinality constraint) of balanced sets in X is still a
balanced set in X.

115. The intersection of a family (no cardinality constraint) of convex sets in X is still a convex
set in X.

Note that, in general, property i. does not hold for an arbitrary family of absorbing sets. Just
think about the family (B(1/n))nen of closed balls of a normed space centered at the origin and
of radius 1/n.

PROOF. 7. Let A, As be teo absorbing sets. By definition, for every x € X there exist pi, po >0
such that

pr €A Vp<pi,
preAs Vo< po

Setting pg:= p1 A p2 we have that px € A1 N As for every p < po.

14. First, observe that for any family of (generic) subsets (A4;);ce of X and any subset A C K we
have A(Njeed;) CNjco(AA;). Now, if (A;));ceo is a family of balanced sets. We have

De(Njcodj) € Njco(Ded;) = Njco Aj.

141. First, observe that for any pair of families (A;, B;);co made up of (generic) subsets of X and

any )\ € K we have
(Njeed)) +(NjeeB)) CNjco(4; + Bj).
Now, if (4;)jce is a family of convex sets, for every A, ;x>0 such that A+ =1 we have

MNjeod;) + u(Njeed;) € Njco(Ay) +Njco(pA))
C Njea(Aj+ pdj)
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= ﬂje@Aj.

The proof is complete. EETE

1.26. Proposition. Let X be a vector space over K. The following assertions hold:

i. The union of a family (no cardinality constraint) of absorbing sets is absorbing. Actually,
it is sufficient that just one set of the family is absorbing for the unions to be absorbing

(because to be absorbing is a property preserved by supersets).
1i. The union of a family (no cardinality constraint) of balanced sets is balanced.

15i. Let (Aj)jee be a chain (no cardinality constraint) of convex sets, that is, for every ji,
Jj2 €O, either A; CAj, or Aj, C Aj,. Then

Uje@Aj
1s a convex set.

Note that, in general, even the union of two convex sets does not need to be convex.

PROOF. i. Trivial. 2. We can use Proposition 1.9. If S:=U;cgS; with each S; balanced, then
given v € S there exists j € © such that v €.S;. Since S; is balanced, we have

[—v,v]k € S;.
But S; € S and we conclude.

1. Let A, >0 such that A+ =1 and let z,y € U;coA;. Without loss of generality, we can
assume that v € A;, y€ Aj, and A;, C Aj,. This implies that x € A, as well. Therefore

A+ py € Aj, CUjeed;

because Aj, is convex. This concludes the proof. EENE

The action of linear maps on balanced sets, absorbing sets and convex sets

It is important to understand how the action of a linear map influence the geometry of the sets so
far introduced. Proposition 1.29 goes in this direction. Before, we need the following simple, but

very useful, observation.

1.27. Lemma. Let X and Y be vector spaces over the same field K and f: X — Y a linear map. The
image of any symmetric segment in X is a symmetric segment in Y:

f([=z,zlg) =[-f(z), f(x)lx VzeX. (1.16)
In particular, if y € f(X), then
fl==,2lg) =[-y, 9]k Yz f(y). (1.17)

Conversely, if y € f(X) CY, the inverse image of the symmetric segment [—y, y|x is the union of
the kernel of f and of all segment [—x,x]x with x € f~1(y). Precisely, we have

S =y, ylg) = (Uzes-1(yl—2, 2]g) U (ker f). (1.18)
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1.28. Remark. Note that, in general, claiming that a function maps lines to lines is weaker than
claiming that it maps symmetric segments to symmetric segments.

PROOF. Let z € X. We have f([—z,z]x) = f(Dex) =Ds f(z) =[—f(z), f(z)]k.
Conversely, let y € f(X). From what we just proved, it follows that for any = € f~'(y) we have

f(l=z,z]g) = [=f(2), f(@)lk =[-v, ylx

so that [~z,2]x € f~([~y, ylx). The arbitariness of z yields U,c -1~z z]x € [ ([~ yl)-
On the other hand, if z € ker f, then f(z)=0¢ [—y,y]g. Overall,

(Ufofl(y)[_xv x]]K) U (ker f) - f_l([_yv y]]K)'

It remains to prove the opposite inclusion; namely that for every u € f~'([~vy, y]x) either f(u)=0
or there exist x € f~(y) and o € Dy such that u=o0z. Let u€ f~1([~y, y]x) and assume u ¢ ker f.
Then, there exists 0 # o € Dy such that f(u)=oy. Hence f(o 'u) =y so that if we set z:=c u
we have z € f~!(y) and u=oz. EENE

1.29. Proposition. Let X and Y be vector spaces over the same field K. Let f be a linear map
defined on X and taking values in Y. The following assertions hold:

i. Let AC X. If A is balanced (resp. convex) in X, then f(A) is balanced (resp. convex) in'Y.
1. If f is surjective and A C X is absorbing in X, then f(A) is absorbing in'Y.

iti. Let BCY. If B is balanced (resp. convex, resp. absorbing) in Y, then f~1(B) is balanced
(resp. convex, resp. absorbing) in X.

1.30. Remark. Note that if f is not surjective then f(A) is included in a proper subspace M of YV
and, therefore, f(A) cannot be absorbing. In fact, if f(A) is absorbing so has to be any superset
of f(A) (cf. Proposition 1.26)

PROOF. 4. » Since f is linear, due to (1.7), we have Do f(A) = f(DeA). Also, as A is balanced, we
have D, A = A and therefore D, f(A) = f(A). This shows that f(A) is balanced. » If A is convex
then, for every A, ;1> 0 such that A+ p=1, we have \f(A) + pf(A)= f(ANA+ pA) = f(A).

ii. » Let y €Y. Since f is surjective, the set f~!(y) is nonempty. Let x € f~!(y). By (1.17) we
have that f([—xz,z]x) =[—vy, y]x. Since A is absorbing, we have po[—z, z]x C A for some sufficiently
small pg>0. By linearity

pol=y, Ylk = pof ([—=, z]x) = f(pol—=, z]x) € f(A).
i1i. » Let B be a balanced set. Then, due to (1.8), De f~1(B)C f~DeB)= f~(B). Hence, f~(B)
is balanced.

» Let B be a convex set. Then, for every A, >0 such that A+ p =1, we have (cf. (1.8))
AfUB)+pfN(B) € fHAB)+ fH(pB)
C [AB+puB)

I
f7UB).

Hence, f~!(B) is convex.
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» Pick any arbitrary point z € X. Set y= f(x). Since B CY is absorbing, there exists pg >0
such that po[—vy, y|lx € B. By (1.18) we conclude that

pol—z,x]x C f(pol—y, ylk) C fH(B).

Hence, f~!(B) is absorbing. EENE

Weighted averages in a convex space. The convex hull

1.31. Definition. Given a subset A of a vector space X, we call convex hull (or convex envelope) of
A, the smallest convex subset of X containing A. The convex hull always exists because every subset
of X is contained in at least a convex set, namely the whole space X. Also, since the intersection
of any family of convex sets is still a convex set (cf. Proposition 1.26), the minimal convex set (with
respect to set inclusion) coincides with the intersection of all convex sets containing A. For any
A C X we denote by Conv(A) or by K(A) the convex hull of A. Formally

K(A) = r{u? {CCX::CDA and C is convex}

C
= N{CCX::CDA and C is convex}.

Note that, if A is convex then K (A)= A. Also, note that if A C B then K(A)C K(B) because
of {Cp 2 B::Cpis convex} C {C4D A::Cy is convex}.

K(4)
Figure 1.5. A generic set A in R?, and its convex hull K(A).

1.32. Definition. Given a generic subset A of a vector space X, we say that an element b€ X is a
convex combination (or a barycentric combination, or a weighted mean) of elements of A, if there
exist a finite set of elements (ax)ren, € A and corresponding positive scalars (A\g)ren, = 0 with
Ekeﬂ\ln A = 1 such that b= Ekeﬂ\ln Ak Q.

A convex combination can always be understood as a generalized sum ) _, A(a)a with non-
negative coefficients (A(a))a.e 4 having finite support and such that 3~ _ , A(a) =1, i.e., as a convex
combination of all elements of A. We denote by H(A) the set consisting of all convex combinations
of elements of A. In other words:
nonnegative, and such that 3 _, A(a)=1.

H(A) = {x X nage Z Ma)a, for some (A(a))qec4, with finite support }

acA

We refer to H(A) as the convex span of A. Note that, if AC B, then H(A)C H(B). In fact, H(A)
consists of the elements of H(B) whose coefficients (A(a)),c 4 have (finite) support contained in A.
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1.33. Proposition. Let X be a vector space and A a subset of X. The following assertions hold:

i. H(A) is a convex set, and it includes A. Therefore, by the minimality of K(A), we have
H(A)DK(A)DA.

it. If A is convex then A D H(A), i.e., A contains all the convex combinations of its points.
In particular, owing to i., we get that H(A)= A whenever A is convex.

Finally, combining i. and ., we obtain that
H(A)=K(A)
because of H(A)C H(K(A))=K(A)CH(A).

PRroOOF. We shall proceed as follows:

1. We prove that if A is convex then H(A)C A. Clearly A C H(A) and therefore

A=H(A) whenever A is a convex set.

2. We then prove that H(A) is convex, regardless of whether A is convex or not. By the
monotonicity of H and the minimality of K we conclude that H(A)C H(K(A))=K(A)C
H(A).

Step 1. Assume A convex. We have to show that any convex combination b= Aia; of elements
of A (a;€ Aand A+ -+ A\, =1), still belongs to A.

1€N,

We argue by induction on n. If n=1 then clearly b= A\1a; =a; € A by assumption. If n=2 then
b=A1a;+ (1 —A1)az € A because this is nothing but the definition of convex set. Let us consider the
case n > 3. We assume that the result is true for any convex combination of n — 1 terms and we write

b= Z )\iai:(l—)\n) Z 1j‘£}\ ai+)\nan
€Ny, i€Np 1 "

with 1= Zz’en\ln Ai=Ap+ Zien\ln,l A;. Here, without loss of generality, we are assuming that A, # 1

because, if A\, =1, than b=a, € A and we are done.

We set c:=) " N, 1_)‘7:\,1 a; and note that, by the induction hypothesis, ¢ € A, because it
is a convex combination of n — 1 elements of A — indeed, )", N, Ai =1 —\,. Therefore, b=
(1 —Ap)c+ Ana is the convex combination of the two elements ¢, a € A. Hence, b€ A.

Step 2. We now show that H(A) is convex. We have to prove that any convex combination of
convex combinations of elements of A is still a convex combination of elements of A. To this end, we
observe that for any Ai, Ao >0 such that \; + Ao =1, and for any convex combinations Za cA wi(a)a,
> weat2(a)a we have
)\12 /Ll(a)a-l-)\zz pa(a)a = Z (Ap1(a) 4+ Agpz(a))a
acA acA a€cA
and 3, (Mipi(a) + Agpa(a)) = A1+ Az = 1. This concludes the proof. EENE

1.34. Corollary. The convex hull of a balanced set is balanced as well. Formally: Let X be a vector
space and A a subset of X. If A is balanced then K(A) (equivalently H(A)) is balanced.
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PROOF. Let A be a balanced set, K (A) its convex hull, and let = € K(A). Then, x =3, \ \ia;
for some a; € A, and \; >0 with Ziewn Ai=1. Let A € K with |[\|<1. One has
Az=Y" Ndai= Y Aibj with b;:=\a;.
ieN,, i€N,
But b; € A because A is a balanced set (by assumption). Hence, Az € K(A). EEEE

(@]

Seminorms on a vector space

1.35. Definition. Let X be a vector space over the field K (K=C or K=R). A function p: X — Ry
defined on the vector space X is called a seminorm if

SNi. p is subadditive:

pz+y)<p(x)+p(y) forallz,yeX; (1.19)

SN2. p is circularly homogeneous (or absolutely homogeneous):

p(Az)=|A|p(z) forall \eK,ze€ X. (1.20)

Note that, if K=C, p is not only symmetric with respect to the origin, i.e., p(x) =p(—=z) for
any = € X, but even circularly symmetric, meaning that p(z)=p(Az) for every = € X and
any A € C such that |A\|=1.

The value p(z) of p at 2 € X is often denoted by the symbol |z |,. In general, cf. Proposition 1.37,
for a seminorm p there holds p(0) =0. However, it is not necessarily the case that p(z)=0 implies
x=0. A seminorm p, such that p(x)# 0 whenever x # 0 is called a norm on X. The set kerp:=
{z € X up(x)=0} is called the kernel of the seminorm p and, cf. Proposition 1.37, it is a vector
subspace of X. Clearly, a seminorm is a norm if, and only if, its kernel is the zero vector space.

Exercise 1.7. Recall that if X is a vector space over the field K, f: X — R a real-valued function, and k an integer,
then f is said to be homogeneous of degree k (or k-homogeneous) if f(\z)=\'f(z) for every A >0. Prove that
the following result holds.

1.36. Proposition. Let X be a vector space over K, and f: X — R a real-valued function. The function f is absolutely
homogeneous if, and only if, f is 1-homogeneous and circular symmetric (i.e., such that f(Az)= f(x) for every
A =1).

Solution. It is clear that if f is absolutely homogeneous then it is circular symmetric and homogeneous of
degree one (because f(Az)=|A|f(z) for any A € K); however, if f is 1-homogeneous and K= R, then, in general,
we can only say that

_J Mf@) i Aazo,
f(M’)_{ IAlf(—z) if A<O0.

Indeed, for A € R we have f(Az)= f(sign(\)|A|z) = |A|f(sign(A)z). It follows that, when K =R, the reverse
implication «if f is 1-homogeneous then f is absolutely homogeneous» holds when f is symmetric with respect

to the origin (that is f(z)= f(—=x) for every z € X). When K=C we need to assume something more, i.e., that
f(Az) = f(x) for every |A\|=1. Indeed, under this assumption, for any A0 (we can assume that A # 0 otherwise
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it is trivially true what we claim) we have

10w) =N e ) = IS,

This concludes the proof.

1.37. Proposition. Let p be a seminorm on a vector space X. Then, as a consequence of the absolute
homogenéity, p(0) =0. Also, the inverse triangular inequality holds

Ip(x1) —p(x2)| <p(x1—x2) for all zq,z0€ X. (1.21)

Finally, kerp is a linear subspace of X

1.38. Remark. The proof never uses the assumption that a seminorm take values in R. It follows
that if p: X — R is a subadditive and absolutely homogeneous real-valued functional defined on
the vector space X then necessarily p(x) >0 for every = € X. This is a consequence of the inverse
triangular inequality (1.21): for any x € X we have 0 < |p(z) —p(0)| <p(x —0) =p(z). Therefore, in
the definition of seminorm, one can relax the condition on the codomain of p requiring only that p
is real-valued.

Proo¥F. From the absolute homogenéity of p we get p(0x) =p(0x-0x) = |0x|-p(0x) =0. For the
inverse triangular inequality, we observe that, due to sublinearity, we have, for any x1, 20 € X,

p(z1) = p(z2+ (v1—22)) < p(22) +p(21 —22).

Hence, p(z1) —p(x2) <p(x;—x2). But then, interchanging the roles of x; and 2, also p(x2) —p(x1) <
p(zo—x1) =p(x1 — x2). This proves the reverse triangular inequality.

Finally, if z1, z9 € kerp then, for every A, Ao € K, we have p(A 11+ Aozwa) <|A1|p(x1) + [ Aalp(z2) =
0. The nonnegativity of p implies that p(Ajz1 + Aaxa) =0, i.e., A\jz1 + Aaxa € ker p. EENE

Example 1.39. If p; and po are two seminorms on the vector space X, then the join of p; and po,
p:=p1Vpa, with p; Vpo:=max {p1,pa}, is still a seminorm on X. Moreover, if at least one among p;
and ps is a norm, then also p is a norm. Indeed, for any (A, z) € K x X we have p(Azx) = (|A|pi(x)) V

(|IA[p2(z)) = |A| (p1(z) V pa(z)). Therefore, p is absolutely homogeneous. Also, let us consider x,
y € X. We have

plz+y) = plz+y)VpAr+y),
and two possible things can happen, either p(z + y) =pi(z + y) or p(x + y) = pa(z + y). Let us
assume the first circumstance, the other one can be treated in the same way. We have
p(z+y) =pi(z+y) <pi(z) +pi(y) < (pr(z) Vp2(z) + (p1(y) V pa(y))-

Hence, p is subadditive. Finally, as pi(z) <pi(x) Vpa(x)=p(x), if p; is a norm and p(z) =0, then
p1(x) =0 and therefore 2z = 0. This shows that p is a norm if p; is a norm.

1.40. Remark. In general, if p; and py are two seminorms on the vector space X, it is not the case
that the meet of p; and po, p :=p1 A pa, with p; A ps:=min {p1, p2}, is a seminorm on X. For a
counterexample we refer the reader to [Ex. 5, p. 14, in C. COSTARA and D. Popa, Ezercises in
Functional Analysis, Springer Science & Business Media, 2013]

Example 1.41. Let C'(Q,R) be the vector space of all continuous functions defined on the nonempty



20 BASIC ALGEBRAIC CONCEPTS
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Figure 1.6. The functional 0, associates to every x € X its distance from the subspace M. It is a seminorm

on X. In the picture, a schematic representation when M =R? x {0}, X =R? and ||-|| is the euclidean norm.
The point 2, € M denotes the unique point on M such that ||z — x| =0u ().

open set Q C RY. Given a compact subset K C Q, for any f € C(Q, R) we define the functional

prc(f) := sup [ f(z)].

rzeK

Clearly, due to Weierstrass extreme value theorem, pg is a well-defined seminorm on C'(2, R). But
this is not a norm on C(Q, R) as ker px # {0}. Indeed, ker px is the vector subspace of C'(Q, R)
consisting of all functions that are identically zero when restricted to K. In particular, if a € Q, then
{a} is a compact subset of Q and the kernel of the seminorm py,;: f+ | f(a)| is the vector subspace
of C(Q, R) consisting of all functions that vanish at a € Q.

Example 1.42. Let LIIOC(Q, R) be the vector space of all real-valued locally integrable functions
defined on the nonempty open set Q C R"V. For any compact subset K C Q the functional

ax(f) = /};\f(x)\dx

defines a seminorm on L{,.(Q, R). But it is not a norm as ker qx # {0}. Indeed ker gy is the vector
subspace of Li,.(Q, R) consisting of all functions that vanish a.e. on K.

Example 1.43. Let (X, ||-||) be a normed space and M < X a vector subspace of X. For any = € X
we define the functional

o () ::wzrelgw |z —m|| =dist(z, M).

The functional 0y, associates to every x € X its distance from the subspace M. It is a seminorm
on X. Indeed: » [absolute homogenéity] For A =0 the homogeneity relation is trivial because
0p7(0) =inf,,e s [[m || =0. On the other hand, for any A € K, A #0, the map

peEM—m:=\peM
gives a parametrization of M, so that

dr(Az) = inf ||[Az—m] = inf ||Az —Ap| = |A[oas(x).
meM peEM

» [subadditivity| for any x, 22 € X, observing that (mi,ma) € M x M+ mj+mo€ M is a para-

meterization of M, and using the subadditivity of the norm ||-||, we get:
D]u(l‘l—f-l’g) = inf ||x1—|—x2—m||
meM
= inf lx1 + 22 —m1 — mal|

(m1,mo)eM x M
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< inf |lzg—ma| 4+ inf [Jze —ma|
mi1EM mo€ M
= dpm(w1) +om(z2).

However, apart from the case where M is the trivial subspace M = {0}, the functional 0y is never a
norm on X because kerdy; # {0}. Indeed ker 0y, ={x € X = dist(z, M) =0} and since dist(z, M) =0
if, and only if = € M, we conclude that ker 0y, = M.

From the previous considerations, the following result easily follows. The functional x +— dist(z,
M) induces a natural seminorm [0y/] on the quotient vector space X /M:

[z]p € X /M — [opr)([x]ar) :=dist(z, M).
The map is well-defined because if 1, x2 € [x|pr then 21 — 29 € M and therefore

dist(z1, M) = inf ||zg+ ((x1—22) —m)| = inf |lzo+ p|| = inf ||z2 — p]|| = dist(za, M)
meM peM peM

the equality inf,cps ||z2 + p|| =infyear|z2 — p|| holding because M is a symmetric set (in fact, a
vector space).

(e]

Example 1.44. Consider a normed vector space (X, ||-||). The class X of all Cauchy sequence z,:
N — X in X can be structured in a natural way into a vector space. We can define on X a seminorm
px through the relation

par(es) = lim [z,
j—o0
with 24 := (2;);en. This is a well-defined seminorm because from the inverse triangular inequality
we have that
lzmll = llznll] < [[2m — 2al,

so that ||z;|| is a Cauchy sequence in R. It easily checked that this defined aseminorm. The kernel
of po is the vector subspace of X consisting of all sequences in X which converge to zero.

1.45. Definition. Given a seminorm p on a vector space X, the sets
By:={reXup(z)<l} and Be:={recXup(r)<l}

are called, respectively, the open (or unachieved) unit semiball of p and the closed (or achieved)
unit semiball of p. Sometimes, when dealing with more than one seminorm, we write Bs(p) and
Be(p) to avoid ambiguities.

1.46. Remark. The qualifications open and closed in this context are not topological. In fact, we
are in a purely algebraic setting. Besides, even when X is a topological space, it is not necessarily
the case that B, = B,, i.e., that the topological closure of the open unit semiball of p coincides with
the closed unit semiball of p.
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1.5.1. Properties of the semiballs

Let us prove the following result.

1.47. Proposition. Let X be a vector space over the field K (K=C or K=R) and p a seminorm
on X. The open unit semiball B, of p and the closed unit semiball Be of p have the following
properties:

1. They are balanced.
ti. For any A€ K, A#£0,
ABo={yeX:p(y) <|A[} and AB.={yeX::p(y)<[Al}.
1tt. They are absorbing.
w. They are convex.

We say that ABs (resp. AB,) is the open semiball (resp. the closed semiball) of p of radius |A|.

1.48. Remark. The assertion #i. does not hold when A = 0. Indeed, when A =0 we have {0} =
ABo #{y € X u=p(y) <|\|[} =0. Also, for what concerns the closed semiball, in general we have
{0} =AB.C {y€ X p(y) < A} =ker p.

ProoF. i. To prove that B, is balanced (the same argument adapts to Bs) we need to prove (by
definition) that if = € B, then [—x,z]x C B,. But this is trivial because, for any |A\| <1 we have
p(Az) = [Alp(z) <p(z) <1.

it. By Proposition 1.24, having already proved that B, and B, are balanced, we know that
AB; = |A|Bs and ABe = |\|B, for every A € K. It is therefore sufficient to prove that |\|B, =
{reX up(x)<|\|}.

Let y=|\|z € [A\|Bs. We then have p(z) <1 and p(y) =|A|p(x) <|A|. On the other hand, if
p(y) <|A| then p(y/|\|)<1; thus y/|\| € B, and, therefore, y=|\|(y/|\|) € |\|Bo. Similar argument
holds for B,.

111, To prove that B, and B, are absorbing it is sufficient to focus on B, because B, C B, and
every superset of an absorbing set is still absorbing.

Having alredy proved that B, is balanced, according to Proposition 1.24, to prove that B, is
absorbing it is sufficent to show that for any x € X there exists po(z) > 0 such that po(z)z € B, i.e.,
such that p(po(x)x) < 1. This amounts to the fulfillment of the condition

po(x)p(z) <1.

It is clear that if p(x) =0 or |A\| =0 every po(z) works, otherwise it is sufficient to take

0< po(x) < L

p(z)

1v. Eventually, the inequality p(Az + puy) < |A|p(x) + |u|p(y) shows that both B, and B, are
convex. Indeed, with reference to B, if p(x) and p(y) are both less than one and |\| + || =1, then
p(|A |z +|p|y) <|A|+|p|=1. The same argument holds for B,. EENE

The following observation will be useful when we will talk about locally convex spaces. It will

Note that every superset of an absorbing
set is still absorbing
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be recalled in Remark 4.13.

1.49. Proposition. Let p., ps be two seminorms on the same vector space X. If po =pg then
Be(pa) € Be(pg) and vice versa. In symbols:

Pa=Ps & Be(Pa) C Be(pp)

In particular, if we denote by Ap, X\ >0, the seminorm x> Ap(x) then, for any A, p >0, there
holds Be(Ap) C Be(pp) if, and only if, A= u>0.

Eventually, we note that for any A € K\ {0} one has

Bo([Alp) = A" Be(p) = A" Ba(p)

ProoOF. The = implication is trivial. For the other direction, consider = € Be(p,). Given any
£ >0, one has po(z /(e +pal(x))) < 1. Hence /(e + pa(x)) € Bo(pa). By hypothesis, this implies
x /(e +palx)) € Bo(pp), that is, pg(x /(e + pal(x))) < 1. It follows that ps(z) < e+ pa(z). By the
arbitrariness of ¢ we get that pg(z) <pa(x). To conclude, note that if p, = pg then, necessarily,
ker po, Lker pg.

Next, note that
Bo([Alp) = {zeXu|Apr) <1}
A lreX = \p(\ o) <1}
A\ lzeXup(r)<1}
A 'Be(p).

Eventually, since B,(p) is balanced (cf. Proposition 1.47), from Proposition 1.24 we get A\~ 'B,(p) =
IA| 71 Be(p). This concludes the proof. EENE

1.5.2. Gauge of a set (Minkowski functional)

Seminorms on vector spaces belong to a very important class of functionals, called Minkowski
functionals, that allow building seminorms via suitable subsets of the ambient vector space.

1.50. Definition. Let X be a vector space and A C X a generic subset. The map pa: X — [0, +o0]
defined, for any x € X, by

pa(z):=inf{a€eR} sxcad} with RL=]0,+o0],
is called the gauge of A (or the Minkowski functional induced by A). Here, we assume the usual

convention inf () = +o0o. Note that ps(z) <1 for every = € A.

For AC X and = € X, it is convenient to denote by [z]4 the numerical set
[z]a:={a€eRLzzcaA}.
Then, pa(x)=inf[z]s for every x € X. Also, since [z]s C [x|p when A C B, it follows that
pp<pa when ACB.

Although we defined the Minkowski functional on a generic subset of X, it becomes interesting
when A is a convex set, and/or a balanced set, and/or an absorbing set.

(@]

The link between Minkowski functionals and seminorms is the object of the next result.

‘We have to consider the quantity  +
pa(z) because the kernels of p, and pg
can be nontrivial.

Hermann Minkowski (22 June 1864 — 12
January 1909) was a German mathemati-
cian and professor at Konigsberg, Ziirich
and Gottingen.

Note that this is more than a convention.
Indeed, any real number is a lower bound
for the empty set. Hence, the g.1.b is +oo.

The intuition here goes like this. If A
is the open/closed ball of radius «, then
pa(z) is the “smallest” radius such that
z € aA. In other terms, one shrinks the
ball by a factor « until the boundary of
the ball passes through z. The radius
«(x) such that the boundary of A passes
through = is pa(z).
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1.51. Proposition. Let X be a vector space. The following assertions hold:

i. If Bo(p) (resp. Be(p)) is the open (or closed) unit semiball B,(p) (or Be(p)) of a seminorm
p on X, then the gauge of Bo(p) (resp. Be(p)) coincides with p. In other terms:

P=PB.(p) =PB.(p)

2. If A is an absorbing, balanced, and convexr subset of X, then the gauge pa induced by A is
a seminorm. But, in general, the closed unit semiball of pa contains A, while the open unit
semiball of pa is contained in A. In other words, if Bo(pa) and Be(pa) are, respectively, the
open and closed unit semiballs of (the seminorm) pa then

Bo(pa) € A C By(pa).

Moreover, if B is any set in between Bo(pa) and Be(pa), i.e., if Bo(pa) C B C Be(pa) then
pA=pp, in particular py= PBa(ps) = PBo(pa)-

113. Also, since the open (or closed) unit semiball Bo(p) (or Be(p)) of a seminorm p on X is an
absorbing, balanced, and conver subset of X, we have, by i., that p=pp () =B, and if
B C X is such that Bo(p) C B C Be(p)

PB=P =PB.(p) =PB.(p)

1.52. Remark. Roughly speaking, the idea to keep in mind is that if A is an absorbing, balanced,
and convex subset of X, then the gauge ps of A is a seminorm. But in general, this seminormdoes
not retain full information about A, in the sense that if we only know p4 then we do not know if py
come from A or any other subset B in between B, (pa) and Be(pa). Later on (cf. Proposition 3.65),
when we will introduce topological vector spaces, we will see that if A is also closed, then A can be
recovered through its gauge, because, in that case, pa = Be(pa).

ProOOF. i. If A= B,(p) is the open unit semiball of a seminorm p, then (cf. Proposition 1.47, .)
pa(z)=inf{a e R} sx €aBs(p)} =infla e R} za>p(x)} =p(x).

Similarly, if A= Be(p) is the closed unit semiball of a seminorm p, then (cf. Proposition 1.47, i.)
pa(z)=inf{a e Rl sx € aB4(p)} =infla e Ry sa>p(x)} =p(x).

2¢. Let us show that the gauge of a convex, balanced, and absorbing set is a seminorm.

Since A is absorbing, p4 is finite for every x € X. In other terms, pa takes values in Ry (no
more in R,).

The fact that the gauge p4 is absolutely homogeneous is a consequence of A being a balanced
set. Indeed, for a generic subset A one always has ps(Az) = Aps(z) for any A >0, because the
conditions Az € @A and = € A" o A are equivalent. In other words, p4 defines a 1-homogenous
function because:

pa(Az) =infla e Ry zz e X laAd} = Ainf{A\la e R} o € A\ tad} = pa(w).

To show that pa is absolutely homogeneous, it remains to prove that pa(Az) =pa(z) for any A € K
such that [\|=1. In fact, after that, for any A € K different from Ok (the case A\ = Ok is trivial) we
have pa(Az) = || PA(‘%JO =|\|pa(z). To prove that pa(Az)=pa(x) when |\| =1, we observe that
pa(Az) =inf{a e Ry zx € (a/\)A=aA}=pa(x) because A is balanced (cf. Proposition 1.24.7).

Recall that ABo ={p(y) <|\|} and ABe =
{p(y) <|A[} for any A €K.

Recall that ABo={p(y) <|\|} and ABe =
{p(y) < ||} for any A € K.
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Figure 1.7. The open (or closed) unit semiball of a normed vector space uniquely characterizes the norm.

Here, it is depicted the shape of the unit balls associated with the p-norms in R2.

Let us show the subadditivity. To prove this we need the convexity of A. Let x,y € X. First,
we prove the following Claim: for any 5 >pa(x) and any v > pa(y) we have

palz+y) <B+7.
After that, it will be sufficient to define, for any £ > 0, the families 5.:=pa(z)+¢ and v :=pa(y) +¢
to infer that
pa(x+y) <pa(x)+pa(y)+2¢  for every ¢ > 0.
Letting ¢ — 0 we obtain the subadditivity of p4.

To prove the claim, we can focus on the case in which both pa(x) and pa(y) are finite. We
note that if 5> pa(x) and v > pa(y), then, from the definition of the gauge functional py, there
exist > [, >0 and > v, >0 such that z € 5, A and y € 7, A. But then, z + y € (S, A+ 7.A) =
(B« + 7+) A because A is a convex set. This means that 5, + 7. € {a € R} 22+ y € wA}. Therefore,
pa(z+y)=inf{acRiur+ycad} < it v <S+7.

Next, we show that Bo(pa) C A C Be(pa). This is readily seen. Indeed, on the one hand,
re€A=pa(r)<1=2€ Be(pa). On the other hand, = € Bo(pa) = pa(x) <1 which means that z € a4
for some 0 <« < 1. Since A is balanced x € AA for every A > «, in particular for A= 1.

Moreover, if B is any set in between B, (pa) and Be(pa), i.e., if Bo(pa) C B C Be(pa) then

PB.(pa) = PB < PB,(pa)-
But p4 is a seminorm and, therefore, by 2., pa=pp,(p,) =PB,(ps)- Hence, pa=pp.

tii. Also, since the open (or closed) unit semiball B,(p) (or Be(p)) of a seminorm p on X is an
absorbing, balanced, and convex subset of X, we have, by 4., that p =pp_ ) =pp,(p)- But now, if
B C X is such that Bs(p) C B C Be(p), then PB.(p) < PB < PB,(p) and, therefore

PB=P =PB,(p) = PB.(p)- EEeE

1.53. Corollary. Let p; and ps be two seminorms defined on the same vector space X and having the
same closed unit semiball (or the same open unit semiball). Then, the two seminorms are identical:

p1=po.

PROOF. The assertion follows by transitivity. Indeed, according to the previous Proposition 1.51,
both p; and po coincide with the Minkowski gauge pa. EENE

1.54. Remark. Corollary 1.53 tells us, in particular, that the open (or closed) unit semiball of a
normed vector space uniquely characterizes the norm. That is the reason why is so “famous” the
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usual picture reported in Figure 1.7 that depicts the shape of the unit balls associated with the p-
norms in euclidean spaces.
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Generalized sequences (nets)

A (partial) order (relation) on a set A, usually denoted by the symbols < or <, is a binary relation on
A having the following properties: 1) a < a (reflexivity); 2) if a <b and b< ¢, then a < ¢ (transitivity);
3) if a<b and b < a, then a =>b (anti-symmetry). If < is an order, then the relation < defined by
a<b when a<band a#b is called a strict order. A strict order can be defined as a transitive
relation such that a <b and b < a cannot occur simultaneously, i.e., if a <b occurs then b £ a. The
expression a < b is usually read as “a is less than or equal to b’ or “b is greater than or equal to a”,
and a < b is read as “a s less than b” or “b is greater than a”. The order is called total if for any a,
b€ A either a b or b<a, i.e., when any pair of elements from A is comparable.

A total order is also called a linear order, and a set equipped with a total order is sometimes
called a chain or a totally ordered set. For emphasis, an order which is not (necessarily) total is
referred to as a partial order.

Let E be a partially ordered set and A a subset of E. We say that a, € A is a minimum of A
(resp. a maximum) of A if a. < a (resp. if a < a.) for every a € A. In general, given a subset A C F,
it is not the case that A admits a minimum (resp. a maximum). But if it exists then it is unique
and denoted by min <)A (resp. max <)A).

An element m € I is called an upper bound for A if a < m for every a € A. In this case, to
shorten notation, we sometimes write

A=m. (1.22)

We say that m is the least upper bound of A in F, and we denote it by sup A (if it exists), when m
is the minimum among all the upper bounds of A. That is, when m € E is such that the following
property holds:

A<mand Vye E(ASy=A<m=y). (1.23)
If sup A exists it is unique.

A partially ordered set (F, <) is said to be a join-semilattice (or reticulated to the right) if
every couple (a,b) of elements of A admits a join: @V b:=sup {a,b}. We set a Ab:=inf{a,b}.
The operator A is called the meet. The dual notions of lower bound, greatest lower bound, meet-
semilattice (or reticulated to the left) are defined in an obvious similar way.

1.6.1. Directed Sets

1.55. Definition. Let (A, <) be a partially ordered set. We say that A is (upward) directed by <,
or filtered to the right by <, if every pair of elements of A admits an upper bound.

Note that if (A, <) is a directed set, then any finite subset of A has an upper bound. Indeed,
if {\,..., A} €A, then

dus €A = A< p2 and Ao < puo,
Juse A po =< ps and A3 < s,

Jpn €A 1= iy and Ay <X .

Thus, in n — 1 steps we get the existence of 1, € A such that \; < p,, for every i € N,,.

Example 1.56. Every totally ordered set is directed, e.g., (N, <), (N*, <), (Q, <), (R, <). More
generally, every join-semilattice (F, <) is directed because for any (a,b) € E x E, the join a Vb is
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an upper bound for both a and b.
Example 1.57. Let (A, <) be a partially ordered set. If max A exists, then A is a directed set.

Example 1.58. Given a set 2, the power set ©(Q2) of Q can be directed in two natural ways. It can
be partially ordered by the inclusion relation C, but also via the inverse inclusion relation D. For
future uses it is a good idea to stress some aspects of this example.

The partially ordered set (p(Q2), C) is a join-semilattice because AV B =AU B for every A,
B € p(Q). Indeed,

AUB=min{U € p(Q) =2 ACU,BCU}.
-

It is convenient to say that AU B is the set that looses against any set that wins against A and B,
where here to win means to include. Note that here 2 wins against any set.

Similarly (p(€2), D) is a join-semilattice because now AV B = AN B for every A, B € p(Q).
Indeed,
ANB = m)in{UGp(Q)::AQU,BQU}
= m;aX{UE p(Q)2ADU,BDU}.

It is convenient to say that AN B is the set that looses against any set that wins against A and B,
where here to win means to be included. Note that here () wins against any set.

1.59. Proposition. If (A,C) and (©,C) are two directed sets, the product set A x © can be directed
by the order relation

()\1, (91) < ()\2, (92) if, and only if, X\; C Ay and 61 C 05.

1.6.2. Zorn’s Lemma

We already pointed out that a total order is also called a linear order, and that a set equipped with
a total order is often referred to as a chain or a totally ordered set. The world chain is however often
reserved to emphasize that we are considering a subset of a partially ordered set which turns out to
be totally ordered when endowed with the order relation induced by the ambient space. Formally,
if (E,<) is a partially ordered set and A C E, denoted by =<4 the restriction of < to A x A, we say
that A is a chain (in F), if the partially ordered set (A, <4) turns out to be a totally ordered.

We say that the partially ordered set (F, <) is inductive if every chain in £ admits an upper
bound (in F).

Finally, we recall that an element m € F is called a maximal element if, considered as a singleton
{m}, it does not admit any upper bounds other than itself, i.e., if it is dominated just by itself, i.e.,
whenever x € F/ and m < = then necessarily z =m.

We admit the following axiom referred to as the ZORN’s Lemma:
Axiom 1.60. (Kuratowski-Zorn, 1922-1935) FEvery inductive set has at least a mazximal element.
1.61. Remark. Note that if I is a totally ordered set then ZORN’s Lemma does not add anything

to the theory of sets. Indeed, to use ZORN’s Lemma one has to check that F is inductive; but if
a totally ordered set F is inductive, then F (being a chain in E) has an upper bound in E. This

Max August Zorn (German: [tsogn]; June
6, 1906 — March 9, 1993) was a German
mathematician. He is best known for
Zorn’s lemma, a maximal principle in set
theory that is applicable to a wide range
of mathematical constructs. Zorn’s lemma
was first postulated by Kazimierz Kura-
towski in 1922, and then independently
by Zorn in 1935.
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means that £ has a maximum, and this is even more than the maximality guaranteed by Zorn’s
lemma. Thus, Zorn’s lemma becomes effective only for sets that are not totally ordered.

1.62. Remark. Note that, roughly speaking, Zorn’s Lemma permits to reduce the proof of the
existence of a maximal element, in a partially ordered set (£, <), to something simpler: the existence
of an upper bound for any of its chains. The idea behind this simplification can be partially realized
by observing that a maximal element can be characterized by saying that: m € E is a maximal
element if, and only if, every chain that passes through m has m as the maximum element. In that
respect, Zorn’s Lemma can be thought of as a kind of compactness result.

Figure 1.8. Axiom of choice. The function g: A — Q is a selection map because g(\) € G(\) for every A € A.

It is possible to prove that Zorn’s Lemma is equivalent to the well-known axiom of choice.
Namely:

Axiom 1.63. (Zermelo, 1904) Let A and Q be two sets, p(2) the power set of Q. Let G be a map
from A to p(Q) such that G(\) # 0 for every A € A. Then, there exists a selection map g: A — Q
such that g(A\) € G(\) for every X € A.

1.6.3. The definition of generalized sequence

1.64. Definition. Let be X any set. We call generalized sequence in X (or net in X') any function
defined on a directed set and with values in X. If (A, <) is a directed set, we denote a generalized
sequence : A€ A —x) € X by

{xA}/\eA or (%\)AEA-

Example 1.65. Let X be a set. Every ordinary sequence z: (N, <) — X is a generalized sequence.
Every function z: (R, <) — X is a generalized sequence in X.

Example 1.66. Let X be a set and p(X) the power set of X directed by inclusion (resp. reverse
inclusion). To every () £V € p(X) we can associate (thanks to the axiom of choice) an element
xy € V. In this way we obtain two different generalized sequence {zy }y ¢ o(x)\{0} in X, that formally
differ by the chosen direction (C or D).

1.67. Remark. The name generalized sequence, especially in the West, is often replaced by the term
net. Generalized sequences (nets) play a fundamental role in topology; indeed, they are associated
with the notion of Moore—Smith convergence that permits to characterize various topological prop-
erties of a topological space that cannot be caught by ordinary sequences.

Ernst Friedrich Ferdinand Zermelo
(German: [tser'me:lo]; 27 July 1871 — 21
May 1953) was a German logician and
mathematician, whose work has major
implications for the foundations of math-
ematics. The axiom of choice was explic-
itly formulated by Zermelo in 1904 and
was objected to by many mathematicians.
This is explained, first, by its purely exis-
tential character which makes it different
from the remaining axioms of set theory
and, secondly, by some of its implications
which contradict intuitive common sense.
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From the historical point of view, was G. Birkhoff who understood the importance of directed sets
in topology. He showed how to characterize topological properties by the means of the generalized
notion of convergence introduced by E. H. Moore and H. L. Smith.

Filters and Filter bases

1.68. Definition. Let X be any set and (X)) the power set of X. We say that a nonempty collection
F of subsets of X is a filter on X if it satisfies the following three conditions:

F1. The emptyset does not belong to F. In symbols, ) ¢ F, or, ) #V for every V € F.
Fa. F is stable under finite intersections. In symbols, if Vi, Vo € F then Vi N5 e F.

F3. Every V € p(X) which contains an element U € F also belongs to F. In symbols, if V € p(X)
and V DU for some U € F, then V € F

Note that F; allows for the existence of a selection map on F. Also, note that condition Fg expresses
that every filter is stable under the superset relation. In particular, the ambient space X belongs to
any filter 7 on X. Also, F3 implies that a filter is stable under arbitrary (in terms of cardinality)
unions. Also, note that from F; and Fs it follows that the intersection of any pair of elements V7,
V5 € F has nonempty intersection (and belongs to the filter).

1.69. Definition. We say that a nonempty collection 53 of subsets of X is a filter base of (or a basis
for) the filter 7 on X if

FB;. BCF

FBs. Every I' € F contains at least an element B € B.

Notation 1.70. Given a family of sets A C p(X) we denote by w(A)"! the subset of p(X) consisting
of all supersets of elements from A. In symbols:

w(A)={Fep(X):F DA for some Ac A}.
Note that, trivially, w(A) 2 A.
Example 1.71. Let B be a nonempty subset of a set X. The singleton 5:={B} is a filter base

on X. The filter w(B) generated by B consists of all subsets of X containing B and is called the
principal filter generated by B.

1.72. Proposition. Let F be a filter on X. Then B C o(X) is a filter base of F if, and only if,
F=w(B).

1.1. ®®® The symbol w is named variant pi or pomega. It is a glyph variant of lower case pi sometimes used in technical
contexts as though it were a lower-case omega with a macron, though historically it is simply a cursive form of pi, with its legs
bent inward to meet. It is used as a symbol for: angular frequency of a wave in fluid dynamics (angular frequency is usually
represented by Q but this may be confused with vorticity in a fluid dynamics context); longitude of pericenter in celestial
mechanics; comoving distance in cosmology; fundamental weights of a representation (to better distinguish from elements w of

the Weyl group, than the usual notation Q).

Birkhoff, Garrett, “Moore-Smith conver-
gence in general topology” Annals of
Mathematics (1937): 39-56.

E. H. Moore, and H. L. Smith, “A gen-
eral theory of limits”, American Journal
of Mathematics, 44 (1922), 102-21
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PRrooOF. If B is a filter base of the filter 7, then necessarily w(53)=F where w(B) stands for the
set of all those subsets of X that include an element of 5.

F Cw(B). Indeed, if F'€ F then, according to FBs, it contains an element B € I3 and therefore
F ew(B). Thus, F C w(B).

wo(B) C F. On the other hand, if '€ w(B) then F' O B for some element B € 3. But according
to FBq1, B € F, and since F is stable under the superset relation and B C I’ we have [’ € F.
Hence, w(B) C F.

Let us prove the sufficiency.
FB;. Suppose F =w(B) for some B C p(X). Since B C w(B) we have that FB; is satisfied.
FB;. On the other hand, if /'€ F =w([B), then there exists an element B € 13 such that B C .

This concludes the proof. EETE

1.73. Remark. Note that Definition 1.69 of filter base is completely unrelated to the condition of
stability under finite intersections imposed on a filter. Indeed, if F is a family of subsets of X
satisfying the properties F; and F3 (not necessarily F5) and if B satisfies FB; and FB,, then it still
holds that F =w(B). Therefore, in general, o (B) is not closed under finite intersection (if F is not)
and, therefore, it is not a filter.

In agreement with the previous remark, it is interesting any result which guarantees that a
family B C p(X) is such that 7 =w(B) is a filter on X. This is the aim of the next result. Note
that, given a subset B of p(X), there does not exists, in general, a filter on X containing 5. For
example, if A, BC X and AN B =1, there is no filter on X containing {A, B}.

1.74. Proposition. A nonempty collection B of subsets of X is a basis for a filter S on X if, and
only if,

Bi. The collection B does not contain the emptyset among its elements;
B2. The partially ordered set (B, D) is directed (filtered to the right).

The filter S is then w(B), and it is the smallest filter containing .

1.75. Remark. Condition By means that when B is (partially) ordered by reverse inclusion ((B, <)
with < being D) the resulting ordered set is filtered at right, i.e., if By, By € 3 then there exists an
upper bound Bs of { By, Ba}. This means that Bj is such that By O B3 and By D B3 or, equivalently,
that B3 C B1 N Bo.

PROOF. The conditions are sufficient. Set S:=w(B). Then, S is a filter on X. Indeed, S does not
contain the emptyset because 5 does not. Moreover, if V' € p(X) contains an element of w(53) then
clearly V € w(B). Finally, we show that S is stable under finite intersections. For any A, Ao €S
there exist Bi, Bs € B such that Ay D By, A2 O Bs. Since (B, D) is a directed set, there exists Bs € B
such that B3 C BN By. Thus, B3 C AN As and this implies A; N As € w(B) =S.

The conditions are necessary. Condition B; is trivially necessary (because the first property of being
a filter basis for S is BC S, i.e., that if B € B then B € S). Let us prove that (B, D) is directed.
Let Bi1, Bo€ B. Since BC S we have By, Bo€S. But S is a filter and therefore F3:= BN By is in
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S. Also, as B is a filter base of S there exists B> B3 C F3. Therefore, given B, By € B (passing
through the filter ) we were able to pick up an element Bs; € B such that Bs C By N Bo. EECE

1.76. Remark. Note the duality character of the results stated in Proposition 1.72 and in Propo-
sition 1.74. The first proposition assumes that we already have a filter F at our disposal, and
characterizes all possible subsets of F which turn out to be a filter base of F. On the other
hand, Proposition 1.74 investigates under which conditions on a subset 1 of (X ) the construction
F :=w(B) produces a filter on X.

Before stating the next result, let us make a simple observation. If i, By are two subsets of
©(X) such that B; C By and VBg € By 3B € 31 :: B1 C By, then
W(Bl) :w(Bg). (1.24)

Indeed, the inclusion w(B1) C w(Bs) is trivial. On the other hand, if F5 € w(B2) then F» D By for
some By € By, and By O Bj for some Bj € B1. Hence, F» D By, i.e., Fy € w(B;). After that, from
Proposition 1.72 we immediately get the following result.

1.77. Corollary. Let B2 be a filter base of the filter F on X. Suppose that B1 C p(X) is such that
B1C By and VBs € Bo AB1 € By : B1 C By. Then By is still a filter base of the filter F on X.

More generally, the following result holds.

1.78. Corollary. Let By C p(X) be a filter base of the filter F1:=w(B1) on X and let Bo C p(X)
be a filter base of the filter Fo:=w(B2) on X. Suppose that

VByeBydB1€B) 2 B1C By and VB;€B13dBye€ By s BoC By. (1.25)
Then, w(Bi) =w(B2).

The previous result can be rephrased in a more suggestive way. To this end, let us introduce
the following definition.

1.79. Definition. Let B; C p(X) be a filter base of the filter 71 :=w(5;) on X, and let B2 C p(X)
be a filter base of the filter F2:=w(B2) on X. We say that the filter base B is finer than B if
w(B1) C w(B2).
We say that the filter bases 31, B2 are equivalent when w(B) =w(B2).
It is simple to show that Bs is finer than B; if, and only if the second relation in (1.25) holds,
that is, if, and only, if
VB e B1dBy€e By :: BoC By. (1.26)

Therefore, relation (1.25) gives necessary and sufficient conditions for the two filter bases 5; and
B> to be equivalent.
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2.1 | Topological spaces (via neighborhoods)

For our purposes, it is convenient to introduce topological spaces through the axiomatization intro- Felix Hausdorff (November 8, 1868 — Jan-
uary 26, 1942) was a German mathemati-
cian. He is considered to be one of the
founders of modern topology.

duced by Felix Hausdorff in 1914 and based on the notion of a filter of neighborhoods of a point.

Let X be a non-empty set. Let V be a function assigning to each x € X a nonempty collection
V(z) C p(X) of subsets of X. We say that (X,V) is a topological space in the sense of Hausdorff
(or that ) defines a topology on X) if, for every x € X, V(z) is the filter of neighborhoods of z,
that is, if the following azioms are satisfied:

H;. For any x € X the family V(z) is a filter on X: » The emptyset does not belong to V(z);
» V(x) is stable under finite intersection. » Every V € o(X) containing an element U € V()
also belongs to V(z).

Hs>. The point = € X belongs to every element V' € V(z). In other words, {z} C Ny cy()V.

Hs. Given any V € V(z), there exists a W € V(z) such that for any y € W one has V€ V(y). In
formulae:

VYV eV(x)IWeV(x):VeV(y) forany yeV.
Note that, due to Hz, one necessarily has y € V for every y € W. Hence, W (xz) C V(x).
The elements of V(x) will be called neighborhoods of z. The function V is referred to as a neighbor-
hood topology on X. If (X, V) is a topological space, we refer to X as its carrier set. The elements of
X are called points of X. The relation V' € V(x) reads as «V is a neighborhood of the point x € X».

Also, if W C X and V € V(y) for every y € W, then we say that V' is a neighborhood of . In other
words, if V' is a neighborhood of every point of a set W, we say that V' is a neighborhood of .

Vev(iz)nV(y)

Figure 2.1. Axiom Hjs. Given any V € V(x), there exists a W € V(x) such that for any y € W one has
V €V(y). Note that, due to Ha, one necessarily has y € V for every y € W and therefore W C V. Also,
VeV(y)nV(x) for any y e W.

33
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2.1. Remark. Note that, if V' is a neighborhood of W then necessarily W C V' (due to Hs). Axiom
H3 can then be stated in the following equivalent forms: «every neighborhood V of x € X is a
neighborhood for some smaller neighborhood W € V(z)», or «any neighborhood V' of = € X includes
a (smaller) neighborhood W of x such that V' is a neighborhood of each point of W». We soon
introduce the concept of interior of a set that allows to reformulate Hg under the equivalent form:
«every neighborhood of x has nonempty interior».

Given a neighborhood topology V on X, for every x € X the collection V(x), being the filter
of neighborhoods of z, is, in particular (by Hy), a filter. Every filter base of V(x) is called a basis
of neighborhoods of x (or a fundamental system of neighborhoods of x). We shall usually denote
a fundamental system of neighborhoods of = by B(z). One then obtains V(x) by considering the
family w(B(z)) of all supersets of elements in 5(x). Therefore, the neighborhood topology on X,
can also be defined by assigning a fundamental system of neighborhoods B(z) to every = in X.

If every point of X has a basis (of neighborhoods) consisting of countably many neighborhoods,
then we say that X is a first-countable space (or that it satisfies the first axiom of countability, or
that it has a countable local basis).

174 w

T space T; space

Figure 2.2. LEFT. If 2 and y are two distinct elements in X, there exist V € V(z) and W € V(y) such that
y¢V and ¢ W. RIGHT. If z and y are two distinct elements in X, there exist V € V(z) and W € V(y)
such that VW =0

A topological space X is said to be (Hausdorff) separated or a Hausdorff space when it satisfies
the following Hausdorff separation axiom (also known as the Th-separation axiom):

Axiom 2.2. (7> Hausdorff separation axiom) If = and y are two distinct elements in X, there exist
VeV(x) and W eV(y) such that VW =1.

Also, let us recall that a topological space (X ,V) is said to be a T} space when it satisfies the
following separation axiom introduced by Fréchet:

Axiom 2.3. (77 Fréchet separation axiom) If = and y are two distinct elements in X, there exist
VeV(x) and W € V(y) such that y ¢V and x ¢ W. Note that, for a Ty space, V and W are not
required to be disjoint.

2.4. Remark. Clearly, every 75 space is also a T} space. Moreover, any metric space (X ,d) is 75 and,
therefore, 77. One may wonder why we should extrapolate, mimicking what happens in metric space,
such a separation property as 71. The reason is that a 77 space allows for an argument omnipresent
in analysis, mainly that if =,y € X and d(x, y) < for every € > 0 then necessarily = =y (even more
concretely, if z € R and |z| <& for every ¢ then z =0). In fact, the equivalent statement in a 7}
space reads as follows.
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2.5. Proposition. Suppose that (X,V) is a T1 space and let x,y€ X. If y €V for every V € V(z),
or if x € W for every W € V(y), then necessarily y= .

The proof is straightforward. Suppose that y €V for every V € V(x) but y # =. Since X is T there
exists U € V(z) such that y ¢ U and this contradicts the assumption. Therefore, it is necessarily

y==ax.

Example 2.6. Metric topology. Let (X, d) be a metric space. We can define a topology on X by
taking as basis of neighborhoods of = € X the set of all open balls { Bo(z,1/n):x e X, neN*} or
the set of all closed balls { Be(z,1/n)::x € X, neN*}. Thus, the metric topology satisfies the first
axiom of countability. Also, it is easy to show that the metric topology is (Hausdorff) separated.

2.1.1. Interior, closure (or adhérence)

Let (X,V) be a topological space and A, B subsets of X.

2.7. Definition. We say that a point z € X is interior to A if A is a neighborhood of =z, i.e., if
AeV(x). The set of points in X which are interior to A is called the interior of A and denoted by
A° or by intx(A). Formally,

A:={ye X = AcV(y)}. (2.1)

By Axiom Hj of the filter of neighborhoods (i.e., each neighborhood of a point contains that point),
we have A° C A. Therefore, (2.1) is equivalent to

A% :={ye A =AcV(y)}. (2.2)
A set AC X is called open when A° D A (and in this case we have A = A°).
Formally, A is open, if and only if, A €V(a) for every a € A, i.e., when A is a neighborhood of

each of its points. In particular, X is an open set. Also, (°:={z € X = () € V(x)} =0 and, therefore,
() is open.

2.8. Proposition. Let (X,V) be a topological space, x € X. The following properties hold:

t. Every neighborhood of x has a further meighborhood included in the interior of it. In
particular, every neighborhood has nonempty interior. It follows that if V € V(x) then V°
is an open neighborhood of x. In particular, V° ().

ti. The interior operator is idempotent. In other words, for any A C X one has A°°= A°. This
is equivalent to say that A° is an open set.

In particular, every neighborhood of = € X contains an open neighborhood (namely, its interior).

PROOF. i. Let V € V(x) be a neighborhood of the point = € X. By definition, cf. (2.2), we have
Vei={yeVaVeV(y}

By the Axiom Hg, we know that there exists W € V(z) such that (0 £W CV and) V € V(y) for
any y € W. But this means that W C V°. Since V° contains a neighborhood of = (namely 1), and
V(z) is a filter, necessarily V° e V(z). In particular, x € V° ().
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1. It is sufficient to prove that A° C A°°. Note that, by definition, cf. (2.2), we have
A%°:={ye A°: A°cV(y)}.
Now, let y € A°. By definition, A € V(y). Also, by 4., we have A° € V(y). Therefore y € A°°. mEEE
2.9. Definition. We say that x € X is an adherént point (or a closure point) of A, if every neighbor-

hood of = meets A, that is, if ANV #0 for every V € V(z). The set of all points that adhere to A
is called the adhérence (or the closure) of A and is denoted by A or by clx(A). Formally,

A:={xe X 2 ANV #0 for every V € V(x)}.
By the Axiom Hy of the filter of neighborhoods we have A C A (as for every x € A we have
{2} C ANV for every V € V(x)). A set A is called closed if A D A (and in this case we have A= A).

2.10. Definition. We say that a set A is dense in B when A D B.

The elementary properties concerning the open and closed sets are collected in the next result.

2.11. Proposition. Let (X,V) be a topological space. The following properties hold:
Properties of open sets.

» The family of open sets contains X and (). Moreover, it is stable under finite intersections
and arbitrary unions.

» Fvery point x of a topological space X has a basis of neighborhoods composed by open sets.
Indeed, every neighborhood V' of x contains the open neighborhood of x given by V°.
Properties of closed sets.

The complement of an open set is a closed set. Therefore, the properties of closed sets can be
derived by (Boolean) duality from the corresponding properties of the open sets. In particular, the
family of closed sets contains X and (). Moreover, it is stable under finite unions and arbitrary
intersections. If X is a Hausdorff space, every singleton is a closed set.

In Proposition 2.11 we recalled that every point of a topological space has a basis of neighbor-
hoods consisting of open sets. However, it is not always the case that each point of a topological space
has a basis of neighborhoods consisting of closed sets. This observation justifies the next definition.

2.12. Definition. We say that a topological space is regular if each of its points admits a basis of
neighborhoods of consisting of closed sets (actually, of regular open sets).

2.1.2. The induced (subspace) topology

Let X be a topological space and M a subset of X.

2.13. Definition. We say that A is endowed with the topology induced by (X, V) when the filter
of neighborhoods of the generic point m € M, that we denote by Vys(m), is defined as

Vi(m):={Vuy CM:z=Vyy=VNM,VeVx(m)}.

Recall that an open set R is called reg-
ular if, and only if R=R™°.
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We then say that (M, V) is a (topological) subspace of X. For any m € M, the collection {V N
M }v ey (m) is also referred to as the trace of the filter Vx(m) on M.

Is it simple to show that, for every m € M, Vy;(m) is a filter of neighborhoods of m.

2.14. Remark. Given a filter 7 on a set X, and A a subset of X, the trace of 7 on A is defined as
the family of sets Fu:={F NA: FeF}. Sometimes also the notation F|A is used. It is simple to
show that the trace of F on A is a filter if, and only if, each set of F meets A (i.e., has nonempty
intersection with A). In this setting, we can say that the topology induced by (X, Vx) on a subset
M C X is the function that sends each m € M to the trace of Vx(m) on M.

2.1.3. Comparison of topologies

The set of all possible topologies on a set X, and by this we mean the set of all possible functions
V:x € X — V(x) satisfying Hy, Hy, and Hg, can be naturally structured into a partially ordered
set. This order relation can be used to compare different topologies defined on the same carrier set.
More precisely, given two topological spaces (X, Vi), (X, Vs), having the same carrier set X, we
say that V) is finer (or stronger) than V5 (or that Vs is weaker than V;), and in this case we write
V1 D Vs, if for every x € X one has Vi(z) D Va(z).

Given two topological spaces (X1, V1), (X2, V2), we write X; < Xy whenever X; C X5 and the
topology V; is finer than the topology induced by V5 on X;. Formally,

X1 —= X if, and only if, X7 C X5 and {V N Xl}VGVQ(m) - Vl(l‘) Vo e Xj.

2.1.4. The product topology

2.15. Definition. Let X and Y be two topological spaces. We call topological product space of X
and Y, the cartesian product X x Y endowed with the following topology: given any (z,y) € X xY
and two bases of neighborhoods 5(z) and B(y) of = and y, we build a basis of neighborhoods of
(z,y) by setting

B(z,y):=B(x) © B(y)
where B(z) ® B(y) :={B1 x By (B1,B2) € B(z) x B(y)}.

It is simple to show that B(x, y) satisfies the criteria of Proposition 1.74 and, therefore, that the
condition H; is satisfied. Thus, B(x, y) is a filter base for the filter w(B(x, y)) on X. Moreover,
one can easily check that V(x, y):=w(B(z, y)) also satisfies conditions Hz and Hg and, therefore,
the map (z,y) € X xY — V(x,y) defines a neighborhood topology on X x Y.

2.16. Proposition. Let Z =X X Y be the topological product of the topological spaces X and Y. For
any A x BC X xY we have A x B= A x B. In other words, the closure of any cartesian product
included in the product space coincides with the product of their closures.

2.1.5. Limit of a generalized sequence

2.17. Definition. Let (X,)V) be a topological space and (A, <) a directed set. We say that the
generalized sequence ())yep converges to a point x € X (not necessarily unique) if

YV eV(x), INEA = xx€V when X =)\ (2.3)
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In this case, we write

x GX—li/r\n T, (2.4)

or, very often, x € limy x) when no confusion may arise.

We remark that, in general, limpz) can reduce to the emptyset. Also, we emphasize that, here, the
symbol = stands for the inverse relation of <, so that A= A\ stand for Ao < .

Terminology. Given a generalized sequence (z))xca in X, we say that (z))yca eventually satisfies a
prescribed property if all terms beyond some Ao € A have that property. For example, if (A, <) has
A* € A has maximum element, then any map x: A — X is eventually constant. Indeed, in this case,
the set {\ € A A= X"} reduces to the singleton {A\*} so that, with \g:= \*, we get that =) =2"
whenever A = \g. After that, we can say that (z))xea converges to a point x € X if for every V € V(z),
(zA)aen is eventually in V.

2.18. Remark. Note that we get an equivalent definition if we replace the filter of neighborhoods
V(x) by any basis B(z) of the filter of neighborhoods.

2.19. Remark. Note that the definition of a limit of a generalized sequence makes sense also when
(A, =) is only a partially ordered set. However, in the context of topological spaces, the notion is
useful and interesting under the stronger condition that (A, <) is a directed set. In fact, although
certain results still hold when (A, <) is a partially ordered set, to have, e.g., uniqueness of the limit
in a Hausdorff separated topological space one needs (A, <) to be directed.

Example 2.20. Let B(xg) be a basis of neighborhoods of xy. The partially ordered set (5(zo),2)
is directed set because for every By, By € B(x¢) there exists Bs € B(xzg) such that B3 C By N By. In
particular, if V(xg) is the filter of neighborhoods of z(, then (V(z¢), D) is directed.

But then, for every B € B(xg) we can (arbitrarily) select an element zp € B (thanks to the
axiom of choice) to get a generalized sequence (75)pep(s) that we claim converges to x¢. To see
this, it is useful to specialize condition (2.3) to the present context. By definition, the generalized
sequence (7p)pep(z,) converges to zo if, and only if,

YV eV(x), 3FIBypeB(xg) ::axp€V whenever B(xo) > B C By.

Now, for any V € V(z) there exists By € B(xo) such that By C V. Hence, if B C By then zp€ B C
By C V. Therefore, xg € limp(,,)zp.

Example 2.21. Indiscrete topology. In general, the limit of a generalized sequence can is not unique.
For example, we can define a neighborhood topology on a set X considering the constant function
V:iz—{X} C p(X). Now, recall that a subset A C X is open if it is a neighborhood of each of its
points. Since the only neighborhood is X, the only two open sets are X and (). The topology so
defined is called the indiscrete topology.

It is easily seen that if 2o X, B(z):={X } is a basis of neighborhoods of z( and (B(x¢), 2)
is a directed set. If we choose a 2 € X we get that the generalized sequence (v5)pep(.,) converges
to z¢ but also to any other point of X. Indeed, the generalized sequence (75)pcp(,) converges to
r € X if, and only if,

vV eV(x), 3TByeB(xo) :xp €V whenever B(xg) > B C By.

Note that as the directed set is (B(zq),
D), the order relation < is now O. There-
fore the condition «when \ = \o» reads
now as «when A C A\p».
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Therefore, taking into account that V(z)=B(z) ={X } for any = € X, the relation 25 € X holds for
any V € V(z). Thus, limp,,zp=X.

Example 2.22. Discrete topology. We can define a neighborhood topology on a set X considering
the family of filters generated by B:z — {x} C p(X), that is the function V: 2z +— w({x}). Now, a
subset A C X is open if it is a neighborhood of each of its points. Since every subset of X passing
through x € X is a neighborhood of X, every subset of X is open. The topology so defined is called
the discrete topology.

Given any generalized sequence (z))xea, a point zp € X belongs to limy x) if, and only if,

YV eV(xzg), FN€EA :x)€V whenever A > .

Now, taking V = {xo}, we get that if z¢ € limp x) then (z))rca is eventually constant and equal to
x. Therefore, if (2))reca is not eventually constant, we have limy x) = ().

2.23. Proposition. Let M C X. Let (my)aen be a generalized sequence in M and m € M. Then
(mx)aen converges to m for the topology on M induced by X, if, and only if, (m)) converges to
m for the topology of X. In other terms:

M-limmy=MnN (X-hmmA)
A A

Here, we have denoted by M-lim the limit operator relative to the subset M endowed with the
subspace topology induced by X on M.

PROOF. Suppose m € M-limy my. By definition, for every neighborhood Vj; € Vi(m) there
exists A\g € A such that my € Vjs for any A = \g. Observe that, for every Vx € Vx(m), Vas:=Vx N M
is an element of Vy/(m) and therefore, there exists A\g € Ag such that for any A= Ao, we have
my€VxNM CV. Hence, m € X-limp m,.

On the other hand, if m € M N (X-limp m, ), then for every neighborhood Vx € Vx(m) there
exists Ao € A such that my € Vx for any A= \g. In particular, for every Vis:=Vx N M, as (my)rea
takes values in M, there exists \o € A such that m) € Vx N M for any A= A\g. This completes the
proof. EETE

2.24. Proposition. Let Z be the topological product space of the topological spaces X and Y. Let
(zx=(xx, Yr))rer be a generalized sequence in Z and z=(x,y) € Z. Then (2x)rea converges to z
if, and only if, (zx)ren converges to = and (yx)rea converges to y.

2.1.6. Uniqueness of the limit of a generalized sequence

2.25. Remark. Let (x))rca be a generalized sequence, and consider a finite number of predicates
Py, Py, ..., P,. If (z))ren eventually satisfies P, eventually satisfies P, ..., and eventually satisfies
P, then, since A is directed we have that (z))yca eventually satisfies Py A Py A ... A P,. Here, the
symbol A stands for the logical and operator.

2.26. Proposition. In a (Hausdorff) separated topological space the limit of a generalized sequence,
whenever it exists, is unique.
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PRrOOF. Let (X,V) be a topological space, and let 1,25 € X be limits (not necessarily distinct)
of the same generalized sequence (x))yea. In other words, suppose that

{xl, xz} g li/I\n T\

Let Vi€ V(z1) and Vo € V(x2). Since x)\ — x1 we have that (z))xex is eventually in V;. Also, since
x) — xo we have that (x))yeca is eventually in V5. Since the set A is directed, by Remark 2.25
we infer that x) is eventually in Vi N V4. Overall, we proved that V1 NV5 0 for every V3 € V(1)
and V5 € V(x2). But this implies that necessarily x; = x5 if X is Hausdorff separated. [ [ [ |

2.27. Remark. Actually, the content of Proposition 2.26 is an “if, and only if”. The only if part
follows from the observation that if X is not Hausdorff then there exit two points z1 # x9 such that
ViNVa#10) for every V4 € V(1) and Vo € V(x2). Selecting an element (z5) from every neighborhood
of the type B=V,N Vs with V1 € V(x1), Vo€V (x2), we build a generalized sequence which converges
both to x1 and wo.

2.1.7. Characterization of the adherence (closure)

2.28. Proposition. Let A be a subset of a topological space X. Then, x € A if, and only if, there
exists a generalized sequence of points in A which converges (for the topology of X) to x. If X
has a countable basis of neighborhoods (that is, when X satisfies the first axiom of countability)
one can replace generalized sequences with ordinary sequences.

2.29. Remark. Note that the closure has to be tested with generalized sequences that take values
in A. Otherwise, every element of the space would belong to the closure: just consider, for z € X,
the constant generalized sequence A € A+ x € X converging to .

ProOF. Let z € limpay with {ay}rea € A. Then, for every neighborhood V' of z, (a))xea is
eventually in V. Therefore ANV = (). This proves that z € A. In particular, the argument applies
to A=N, i.e., when (a))ren is an ordinary sequence.

On the other hand, let # € A and let us prove the existence of a generalized sequence
converging to x. As z € A, each neighborhood of x contains at least one point of A. Thus, if
B(xz) CV(z) is a basis of neighborhoods of = directed by the usual inverse inclusion relation
(B1 < By if, and only if, B1 D Bs), then BN A+() for every B € 3(x). Hence, we can select a point
ap € AN B to build the generalized sequence (aB)BGB(m) that converges to z, i.e., x € limpg(,)ap
(cf. Example 2.20).

Moreover, if X has a countable basis of neighborhoods, then there exists a countable
filter basis Bn(z) ={Bn}nen € V(x) and the same construction produces an ordinary sequence
(aB,)B, cB(x) converging to z € A. EmeE

2.1.8. Continuous functions

Let (X,Vx) and (Y, Vy) be two topological spaces, f a function from X to Y, ¢ a point of X and
yo= f(zo) €Y its corresponding value under f.

2.30. Definition. We say that the function f is continuous at xg when, for every neighborhood V' of
yo:= f(xp) there exists a neighborhood U of z( such that f(U)C V. In symbols:

YV eV(yo), 3U € V(o) == f(U)C V. (2.5)
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Equivalently, f is continuous at x if the inverse image of every neighborhood of y is a neighborhood
of Zo.

Clearly, one can replace the whole filter of neighborhoods V(yp) by any filter basis of neigh-
borhoods of 19. More precisely:

2.31. Proposition. The function f: X — Y is continuous at xo € X if, and only if, the inverse image
of any neighborhood belonging to a filter basis of neighborhoods B( f(x¢)) is a neighborhood of x.
In symbols: f is continuous at xo if, and only if, f~1(B(f(x0))) C V(x0).

2.1.9. Characterization of contintiity through generalized sequences

2.32. Proposition. The function f: X — Y is continuous at xg if, and only if, for any generalized
sequence (x)\)ren converging to xq, the generalized sequence (f(xy))ren converges to yo= f(xo).

If X satisfies the first axiom of countability, then the role of generalized sequences can be replaced
by ordinary sequences.

2.33. Remark. Although trivial, it is important to note that if (z))yca is a generalized sequence
taking values in a generic set X (i.e., if : A — X is a function from the directed set A into X), and
f: X =Y is any function, then (f(x)))rca is a generalized sequence in Y.

Remark [on the uniqueness of the limit]. Note that no Hausdorff separation hypothesis has been
made on the topological spaces X and Y. Thus, Proposition 2.32 must be read as follows: the
function f: X — Y is continuous at o if, and only if, for any generalized sequence (x))rcn there
holds that if xo € limp (x))ren then f(xo) € limpa (f(z)))rea-

Proor. [if part] Let f be continuous at z¢ and let (z))rea be a generalized sequence such that
To € li/{n (ZA)reA-

Let yo= f(z0) and consider a neighborhood V € V(). The contintity of f shows that there
exists a U € V(zg) such that f(z) €V whenever x € U. Since (z))ren — 2o, we can find, in
correspondence to this U, an index Ay € A such that x) € U for all A = A\yy. Therefore one has
f(zy) €V for every A= Ay, that is, (f(xa))rer — f(x0).

[only if part] Let us suppose that f is not continuous at zp. We show that, under this
condition, there exists a generalized sequence (x))rea such that

(xa)xea — 2o but (f(xx))rea does not converge to yo= f(zo).

Indeed, the non-contintity of f reads as
IV eV(y) = YU € B(zo) f(U)NVEE£D,

where B(xg) is a basis of neighborhoods of z(. Therefore, for each U € B(zy) we can pick a
point zy such that xp € U and f(xy) ¢ V. Clearly, the generalized sequence (217)y¢ (s clearly
converges to zo. On the other hand, for every U € B(z¢) we have f(xy)e X \V (with V € V(yo));
thus, the generalized sequence (f(71))cp(,) cannot converge to yo= f(zo)-

[If X has a countable local basis| If X is first countable, one can consider a countable basis
B(x¢) to conclude. EENE

We use a basis of neighborhoods because,
in this way, we are sure that thegeneral-
ized sequence we build converges.
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2.1.10. Adherence and continuity

The following result will be often used in the sequel.

2.34. Proposition. Let f: X — Y be a map between the topological spaces (X, Vx) and (Y, Vy),
and suppose that f is continuous at zo€ X. If o adheres to A C X then f(xo) adheres to f(A).
In particular, if f is continuous at every point of X then:

f(A) C f(A).

2.35. Remark. Pay attention to the closure operators that appear on the left- and right-hand sides

of the relation f(A)C f(A). Although we used the overbar symbol to denote them, they have very
different meanings. If V;, Vs are two topologies on the same set X and f: (X, V1) — (X,)s) is a
continuous map, then the inclusion relation reads as

flelix vylA]) Celix vyl f(A)].

PROOF. Since x( € A, there exists a generalized sequence (ay)yeca of elements of A which converges
to 2. The continuity of f at z¢ shows that the generalized sequence ( f(ay))rca converges to f(z)
and this shows that f(zg) € f(A) because f(xp) is among the limits of a generalized sequence in
f(A). EENE

(e]

2.38. Corollary. Let f: (X, Vx)— (Y, Vy) be a continuous map. If f is surjective, then it sends

dense subsets into dense subsets. In other words, if A= X then f(A)=Y.

PRrooOF. It is sufficient to note that

Y = f(X) = f(cix,wlA]) € clixw)lf(A)] CY.
This concludes the proof. EENE

2.1.11. The principle of extension of the identities

2.39. Proposition. Let f, g be two continuous functions defined in the same topological space X and
taking values in the same topological space Y. If Y is (Hausdorff) separated, then the coincidence
set

A={zeX s f(x)=g(x)}

is closed. In particular, if Xo is a dense subset of X included in A, then f= g in the whole space
X because ofX:)T.Q/_l:AQX.

PROOF. We have to prove that A C A, i.e., that if b€ A then f(b) = g(b). Since b€ A, according
to Proposition 2.28, there exists a generalized sequence in A, let us call it (ay)rea, such that
(ax)ren —b. Since (f(ax))aea = (g(ar))ren, we infer, from Proposition 2.32, that

7o)€ (lim (flaner) = (lm (gla)ren ) 2 g(0).

Hence { f(b), g(b)} Clima (f(ax))aea =1lima (g(ar))rea. But since Y is a Hausdorff space, the non-
empty set limp (f(ay))aea =lima (g(ar))aen is a singleton. This implies that f(b) =g¢g(b). mEZE
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0 1/2 1

Figure 2.3. The Thomae function D), is periodic of period 1 and is identically zero on the irrationals. For
each rational x:=(p/q) € Q, (p, q) € Z x N, the value of Dy/(p/q) is computed by first dividing p and ¢
by ged(p, ¢) to obtain the representation of x in lowest terms, x ::%,
denominator of % Note that Dy,(x) =1 for every x € Z, although this is not reported in the picture because

and then returning the inverse of the

it depicts the restriction of D), to the open interval (0, 1).

2.40. Remark. It is important to stress the range of application of principle of extension of the
identities. The functions f and g must both be continuous in order to infer that if they agree on a
dense subset than they agree everywhere. An example will help illustrating what we mean. Consider
the case in which X =R is the real line. Let f:2 € R— 0€ R be the continuous function identically
equal to zero in R. Let g: R— R be a function (not necessarily continuous) whose restriction to a
dense subset A CR, A+ R, coincides with the function identically equal to zero:

gla= fla=0a.

If g is not continuous in R, then we cannot infer that f=g¢ in R, i.e., that ¢ =0 in R. This is
trivial because one can always redefine ¢ outside of the dense subset A in an arbitrary way to get
an extension of g4 different from . What is less trivial is that even if we discover that g is a
function continuous at every point of a dense subset of R then, still, it is not necessarily the case
that ¢ is continuous in the whole of R and, therefore, it is not necessarily the case that g= f in R.
A concrete example of such a situation is given by the so-called Thomae function (sometimes also
called modified Dirichlet function or the small Riemann function) defined by

if teR\Q,
iface@arldar::g

0
D =
i () % b ifaeZ,beN are coprime.

Note that Dys(x) =1 for every x € Z. Also, note that Dy;(0) =1 because b= 1 is the only element
in N that is coprime to a =0. For each z:= % €Q, (p,q) € Zx 74, the value of Dys(x) is computed

a
Ev
and then returning the inverse of the denominator of %. The function is periodic of period 1 and
bounded, 0 < Dys(z) < 1. A sketch of the graph of Dy is given in Figure 2.3. Clearly D)/ is a

discontinuous function in R. However, more precisely, it is possible to show that D), is discontinuous

by first dividing p and ¢ by gcd(p, ¢) to obtain the representation of x in lowest terms, = :=

at the rationals but continuous at the irrationals. Therefore, although the function Dy;: R — R is
continuous at every point of the dense subset R\ Q of R, and D)/ |r\g) =0, it is not the case that
g is continuous in the whole of R and, therefore, it is not the case that g= f in R.

Note that, instead, there is no function f:
R — R which is continuous on the ratio-
nals and discontinuous on the irrationals.
This is because of Baire category theorem
which implies that the set of continuity
points of f:R — R must necessarily be
a G set (i.e., countable intersection of
open sets) and it is possible to show that
Q is not a Gs-set. On the other hand, it
is simple to show that R\ Q is a G5 set.
Indeed, we have R\ Q=N,cq (R\ {q}).
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TOPOLOGICAL VECTOR SPACES

3.1. Definition. A topological vector space is a vector space X endowed with a topology Vx com-
patible with the vector space structure, that is, such that

TVS;. The map (z,y) >z + y is continuous from X xX to X. Here, the space X xX is endowed
with the product topology.

TVSs3. The map (A, z) — Az is continuous from K x X into X. Here, the field K (with K=R or
K = (C) is endowed with its natural euclidean topology, while the space K x X is endowed
with the product topology.

Let us recast the continuity of the scalar multiplication and of the vector addition operations
in terms of the filter of neighborhoods. The contintity of vector addition means that for any
(z,y) € XxX, the following holds:

VWery€Vx(x+y) I(Ve, Vy) € V(o) X Vx(y) = Vo+V, CVigy,. (3.1)
Similarly, the contindity of scalar multiplication means that for any (A, z) € K x X there holds:

YWae € Vx(Az) 3(In, Vo) € VR(N) x Vxe(2) = Iy Vi C Vag. (3.2)

3.2. Remark. Relations (3.1) and (3.2) should be keep in mind in the following operational way.
If 2z € X, there are infinitely many ways to decompose z in the form z =z + y with =, y € X. The
continuity of vector addition stated in (3.1) guarantess that if for my purposes it is favourable to
decompose z in the “simpler” form z =z + y, then given any V. € Vx(z) there exist neighborhoods
(V. V) € Vx(x) x Vx(y) such that V,+V, C V.. A similar observation applies to the continuity of
scalar mltiplication in (3.2).

Example 3.3. It is simple to show that the indiscrete topology on a vector space X over K, is
compatbile with the vector space structure and, threfore, a vector topology on X. On the other
hand, a vector space X over K endowed with the discrete topology is not a topological vector space
unless X ={0}. Note that when X ={0}, the discrete topology coincides with the indiscrete topology.

3.4. Proposition. The topology of a topological vector space is translation-invariant. In other terms,
for every x € X the filter of neighborhoods V(x) of = is given by x +V(0). In symbols

V()={WepX):W=x+V with VeV(0)}.
The proof of Proposition 3.4 is an immediate consequence of the following simple observation:

3.5. Lemma. Let Z:= X x Y be the (topological) product space of X and Y. Let f:Z — H, with H
another topological space, be a continuous function. Then, for every (xo,vyo) € Z the partial functions
Jeop v €Y = f(wo,y) € H and fi,,: v € X f(x,y0) € H are continuous.

45
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PROOF. (of Lemma 3.5) Let us focus on the partial function fi,,]. The argument to treat f[,
is the same. We define the inclusion map t[,,: y €Y — (z0, y) € Z. Clearly, fi.,= f0t[) It is
therefore sufficient to prove that ¢, is a continuous function. To this end we observe that for
W C Z we have (cf. Figure 3.1)

/,[jr(l)}(W) = {yeY u(xg,y) eW}

= {yeY u(zo,y) eWN({xo} xY)}
= {yeYu(r,y) e Wn({xo} xY) for some z€ X}
= m(W N ({zo} xY)),

where mo: Z —Y stands for the canonical projection on the second factor. Now, consider a generic
point (zo, y) € Z and let (B; x Ba) € B(x0) ® B(y) be a basis neighborhood of (xg, y). We have
/,[;,(lﬂ(Bl X Ba) =ma((B1 x B2) N ({zo} XY')) =ma2({xo} x Bz) = By. Therefore, by Proposition 2.31
the inclusion map ¢, is continuous. This completes the proof. EENE

{zo} XY X

Figure 3.1. For W C X x Y we have L[;(ll](W) =m(W N ({zo} xXY)).

PRrOOF. (of Proposition 3.4) Let us denote by o: (z,y) € XxX —x + y € X the (continuous)
vector sum in X. Let W be an arbitrary neighborhood of x € X. The partial function oy,
y— =+ y is a bijection of X onto X. According to the previous Lemma 3.5 applied to the
(continuous) vector sum o, o[, is a continuous map. The inverse map 0[;}1: w—w —x, is
continuous as well, and therefore o[, is a (topological) homeomorphism of X onto X. Since

every set passing through x is mapped by O’[;}l bijectively (and continuously) into a set passing

through 0, we have that O’[;}l maps bijectively every neighborhood of x onto a neighborhood of

0. In formulas, O'[;}I(W) €V(0) for every W € V(z). Hence, for any W € V(z) we have
W =o0[,0 O'[;:}I(W) =z+ O'[;:}I(W) with O'[;:]I(W) € V(0).

This concludes the proof. EETE

3.6. Remark. Note that O’[;]l(W) ={yeXux+yecW}=—x+W. Therefore every neighborhood
W of  can be written as W =z + (—z + W) with —z + W € V(0).

By an argument similar to the one used to prove Proposition 3.4, one can easily show that if

x,y€X, A#£0, and V € V(x), then AV € V(A\z) and y+V € V(z + y).

Moreover, the following implications hold.

3.7. Proposition. Let A\#0, ye X and E CX. The following assertions hold:

i. If E is closed, then y+ E and \E are closed as well. If E is compact, then y+ E and \E are
compact as well.
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1. If U is open then AU is open as well.

wi. Let E,U CX. IfU is open than U + E is open as well. In other words, given a finite number
of subsets Fn, ..., E, of X it is suffiicent that at least one of them is open for their sum to
be open. In particular, if U is open, then y+ U is open.

3.8. Remark. Note that {0} is a compact set. However, in general, if £ is open (or closed) nothing can
be said about A\E' when A =0, i.e., about the singleton {0}. It can be closed or not, but it is certainly
closed when the space is Hausdorff separeted (in general, 77 suffices, but this is equivalent to be 75 in
the category of topological vector spaces; cf. Proposition 3.20). In logical arguments, when one has
to deal with expressions like AE with A CK, 0 € A, one has to treat the case A =0 with special care.

PROOF. The assertions in i. and 4. are consequences of the homeomorphic character of scalar
multiplication and of the vector addition. To prove iii. we observe that U + E = Uzcp(z+U).
But for every « € E the set x4+ U is open. Thus, U + F is open being union of open sets. ERIE

The closure of convex sets and of balanced sets

In this section we are going to prove that the (topological) closure of a balanced (resp. convex) set is
still balanced (resp. convex). Before giving proofs, it is worth to observe that we are not considering
how the (topological) closure of an absorbing set behaves. The reason is that it is trivially true that
the closure of an absorbing set is still absorbing because any superset (in particular the closure) of
an absorbing set is still absorbing (cf. Proposition 1.26).

3.10. Proposition. In any topological vector space the following assertions hold:
1. The closure of a balanced set is balanced;
1t. The closure of a convex set is convex.

112. The closure of a vector subspace is a vector subspace.

PROOF. 4. Let g be the scalar multiplication map (A, z) — Az. By definition, a subset A of
a topological vector space X is balanced if g(De x A) C A (where D, is the closed unit disk
of K). Thus g(De x A) C A. Also, the contintiity of ¢ implies that g(De x A) C g(De x A) (cf.
Proposition 2.34). Overall,

g(De x A) C g(Dy x A) C A.
On the other hand, cf. Proposition 2.16, Dy x A =D, x A and, therefore,
g(De x A) C A.
The previous equality is nothing but the definition of «A is a balanced set».

1. For any fixed 0 < A <1 we consider the map f: (2, y)+— Az + (1 — \)y defined in the
topological product space X xX and taking values in X. Note that, f) is continuous because it
is a composition of continuous maps. The convexity of a subset A C X can be reformulated in
terms of f) as

MH(AXxA)CTA for every 0< AL
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Let 0 <A< 1. The continuity of f\ assures (cf. Proposition 2.34) that f\(A x A) C A. Since
(A X A)= fA(A x A) (cf. Proposition 2.16) we end up with the relation fy(A x A) C A. The

arbitrariness of 0 < A <1 shows that A is convex.

#2. The proof is based on the same ideas already used. For any A\, € K we consider the
continuous function fy ,:(z,y) € X xX — Az + py € X. One observes that M/ C X is a subspace
of X if, and only if, for any A, u € K one has f\ ,(M x M) C M. Hence what one has to prove
is that if f\ (M x M) C M then f\ (M x M) C M. This is easy to prove. One has

fA,u(M X M) = f)\,,u(M X M) (3-3)
C Au(MxM) (3.4)
C M. (3.5)

Indeed, (3.4) follows from the continuity of f, while (3.5) follows by the assumption that
I (M x M) C M. The arbitrarity of A, i € K concludes the proof. EENE

We end this section by stating some other interesting properties about the interior of a convex
set.

3.11. Proposition. Let X be a topological vector space and A a subset of X. If A is convex then its
interior A° is convez too.

Proor. For any fixed 0 < A <1 we consider the map fi: (z, y) — Az + (1 — \)y defined in the
topological product space (X xX) and taking values in X. The convexity of a subset A C X can be
reformulated in terms of f) as f\(A x A) C A for every 0 < A < 1. Therefore, we have to prove that
a(A° x A°) C A°. For that, we observe that since A is convex (by hypothesis), we have f\(A°x A%)C
(A x A)C A, so that (passing to the interiors)

[AA(A” X A%)]° C A°.

Thus, to complete the proof, it is sufficient to prove that, for any 0 <A <1, fi(A° x A°) is an open
subset of X. But this is a particular case of Proposition 3.7 as f)(A° x A°) =AA°+4 (1 — \)A° is the
sum of two open sets. EETE

3.12. Corollary. Let X be a topological vector space and A a subset of X. If A is open, then its
convex hull is still open.

PrOOF. Indeed, let us denote, as usual, by K(A) the convex hull of A. According to Proposi-
tion 3.11 we have that [K(A)]° is a convex set. Also, as A is open, we have A= A°C K(A). Thus,
A=A°C[K(A)]°C K(A). Since K(A) is the smallest convex set containing A we conclude that
K(A)C[K(A)]°. Therefore K(A)=[K(A)]°. EENE

3.13. Proposition. Let X be a topological vector space and A a subset of X. If A is balanced and
0 € A° then its interior A° is balanced too.
PROOF. We have to show that D,A° C A°. This amounts to prove that

Uxeb, (AA°) € A°.

Recall that (cf. Proposition 3.7) Uycp,\{0}(AA°) is an open set, because union of open sets. More-
over, since A is balanced,

U)\e]]]).\{o}()\Ao) CDh,A=A.
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Passing to the interiors, we get
Uneb,\ {0} (AA°) C A°.

By hypothesis, 0A° =0 & A°. Therefore, Dy A° C A°. This concludes the proof. EECHE

3.14. Remark. Note that, if 0 ¢ A° then A° can be not balanced. A simple example in R? is depicted
in Figure 3.2. Also, note that, in general, the interior of an absorbing set is not absorbing. For
example, cf. Figure 3.2, the set C°:={x,y € R?:: |y| > 22} is not absorbing (it does not absorbs any
point on the coordinate line {y =0}) althouh it is the interior of the absorbing set C':=[(—1,0),
(L0)rU{z,y e R?=[y| > 2},

4 N

R? R?

Figure 3.2. Left. A CR?is balanced, however its interior is non-empty and does not contain the origin.

Therefore, A° is not balanced. Right. The set C' is absorbing, while its interior is not. J

-

3.15. Proposition. Let X be a topological vector space and M a vector subspace of X. If 0€ M® then
the interior M° of M 1is still a vector space.

Proor. For any A, ;1 € K we consider the continuous function fy ,: (z,y) € X x X = Az + py € X.
One observes that M C X is a subspace of X if, and only if, for any A, € K one has fy ,(M x M) C
M. Hence what one has to prove is that if fy ,(M x M) C M then fy ,(M°x M°) C M°. To this
end, we observe that

Pop(Mex M) C fo (M xM) < M. (3.6)
Hence
[fa,u(Mex M°)]° € M°. (3.7)

Next, we observe that for A, 1 € K the set fy ,(M°x M°)=AM°+ pM° is open unless A = p=0.
Therefore

I (MO x M®) =[f, u(M°x M°)]°C M° for every (X, i) # (0,0). (3.8)

It remains to check the case (A, i) =(0,0), i.e., that foo(M° x M°) C M°. But this nothing that
the assumption 0 € M°. The proof is completed. EETE

3.16. Proposition. Let X be a topological vector space and A a subset of X. If A is absorbing and
0 € A° then its interior A° is absorbing too.

PRrRoOOF. The proof is left as an exercise. However, compare the statement with the condition FN4
of the structure theorem Theorem 3.17. EETHE
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Characterization of the basis of neighborhoods of the origin of a topological vector
space

We have seen that the topology of a topological vector space is invariant under translations. This
means that the knowledge of a fundamental system of neighborhoods of the origin uniquely identifies
the full topology of the space. In this section we aim to characterize the properties that a filter must
possess in order to be a filter of neighborhoods of the origin for a topology compatible with the vector
space structure. In other words, given a vector space X and a filter V on X, we aim to understand
which properties V must satisfy for the translations (z 4 V),ex to define a neighborhood topology
on X compatible with the vector space structure on X. A complete answer to this question is the
content of the next result which we state without proof.

3.17. Theorem. (Structure theorem for TVS) Assumptions: Let X be a vector space over the field
K, 0€ X the origin of X and F a filter on X. Claim: the family F is a filter of neighborhoods of the
origin 0 € X (for a neighborhood topology x + (x + F)) compatible with the vector space structure
of X if, and only if, it satisfies the following five properties:

FN;. (F is fixed at 0) The origin 0 € X belongs to any V € F. In other terms:

0en{ver}

FN,. (continaity at (0,0) of the vector addition) For every V € F there exists a W € F such
that W +W C V. Compare this condition with (3.1).

FNj. (invariance of F under nonzero homothétic transformations) For any (A, V)€K x F
with A#0, one has \V € F.

FNy4. FEvery V € F is an absorbing set.

FN5. Every V € F contains another element of the filter F which is balanced (and hence also
an absorbing set due to FN).

Let us recall that a nonempty collection F of subsets of X is a filter on X if it satisfies the following
three properties: The emptyset does not belong to F; F is stable under finite intersections; every
V€ p(X) containing an element U € F also belongs to F. Also, recall that a filter F is called aa
free filter if the intersection of all of its members is empty, whereas F is fixed at = € X when
reM{VeF}.

3.18. Remark. Properties FN; and FN5, together, assure that the family of neighborhoods B C F
consisting in of balanced (and absorbing) sets form a fundamental system of neighborhoods of the
origin: w(B) =F.

3.2.1. Immediate consequences

We want to give a characterization for a topological vector space to be (Hausdorff) separated. To
this end, we recall that (cf. Axiom 2.2 and Axiom 2.3) a topological space X is T} if whenever x and
y are two distinct elements in X, there exist V € V(z) and W € V(y) such that y ¢ V and = ¢ W.
However, if X is a topological vector space, then X is 7; if, and only if, the following (apparently
weaker) property holds:

T7. For every z# 0 there exists a neighborhood U € V(0) such that z ¢ U.

Homothétic transformation are also called
homothéties or homogeneous dilations

The the definition of filter
has been given in Section 7
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Obviously 7; implies 7F. On the other hand, assume 77 holds. Given x,y € X, with z # y we set z:=xz — y. Clearly
z#0 and, therefore, by 77" and FNj there exists a balanced set B € V(0) such that z ¢ B. We set

Vi=z+BeV(z), W:=y+BecV(y),

and show have that z ¢ W and y ¢ V. Indeed, if y=x+0b for some b € B, then —z=y —z =05 and, therefore, z€¢ —B=B
because B is balanced. By construction, this cannot be the case (because z ¢ B). Similarly, if z € W, then z =y +b
for some b € B. But then, z=12 — y =0 implies that z € B and this cannot be the case because, by construction, z ¢ B.

3.19. Remark. Note that 77" can be equivalently stated in the following form: for every z 0 there
exists a neighborhood U € V(0) such that 0 ¢ =z + U. Indeed, if this is the case (i.e., if 0 € 2+ U),
we can consider a balanced neighborhood of the origin B included in U (which necessarily satisfies
0 ¢ z+ B) to infer that z ¢ B because, otherwise, —z € B so that 0=z —z€ 2+ B.

We can apply a similar argument to a 75 topological vector space. What one finds is that the
T5 separation axiom is equivalent to the following (apparently weaker) assertion:

T3 . For every = # 0 there exist neighborhoods U € V(0) and V € V(z) such that UNV 0.

We now show that in a topological vector space, the 77 and 75 separation axioms are equivalent.

3.20. Proposition. A topological vector space (X,V) is (Hausdorff) separated if, and only if, for
every x + 0 there exists a neighborhood U € V(0) of the filter of neighborhoods of the origin such that
x ¢ U. In other words, X is a Ty space if, and oly if, it is a T} space.

Before giving the proof, let us make the following observation.

3.21. Lemma. Let B be a balanced neighborhood of the origin and x € X. If BN (x+ B)+ 0 then
x€(B—B)=(B+B).

ProOF. If BN (z+ B) # () then for some z € X we have z € B and z € x + B. Hence, for some
be B we have z =z + b from which z =2z — b€ B — B. Eventually, since B is balanced, we have
B=-B. [ [ B

3.22. Remark. Note that, the statement can be rephrased, by contraposition, in the following form:
if ¢ (B+ B) then BN (z+ B)={. In the context of normed spaces this assertion can be easily
understood. If B is the unit ball of radius one centered at the origin, then the statement says that
if x is a point outside of the ball of radius 2 then the intersection of the unit ball centered at = and
the one centered at the origin cannot intersect.

PRrROOF. (of Proposition 3.20) The condition is trivially necessary. Let us show that it is suffi-
cient too. Due to the invariance of the topology of X under translations (cf. Proposition 3.4) it
is sufficient to show that: [Claim]: If x # 0 and there exists a neighborhood U € V(0) such that
x ¢ U then there exists B €V(0) and V € V() such that BNV =1).

Now, from Theorem 3.17, properties FNo and FNj, there exists a balanced set B € V(0)
such that (B+ B) = (B — B) CU. From the previous Lemma 3.21 we know that if x ¢ B + B,
as in our hypothesis because of x ¢ U O B + B, then necessarily BN (z + B) = (. It is therefore
sufficient to set V =2+ B. EEEE

The condition stated is referred as the T}
separation property in the context of gen-
eral topological spaces. In other terms, in
a topological vector space T < T»

Since B is balanced, we have B=—B. In
particular, B+ B =B — B.
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3.2.2. Regularity of the topology of a topological vector space

The next result shows, in particular, that the topology of a topological vector space is regular.

3.23. Proposition. In a topological vector space (X,V) there exists a fundamental system of neigh-
borhoods of the origin consisting of sets which are closed, balanced (and absorbing).

PROOF. It is sufficient to prove that every neighborhood of the origin contains a closed and
balanced neighborhood. Due to the properties FNy and FNj5 of the structure theorem (cf. The-
orem 3.17), for every U € V(0) there exists a balanced neighborhood B of the origin such that

B+B=B-BCU.

Indeed FN; assures the existence of a V' € V(0) such that V + V C U, while FN5 gives the
existence of a balanced set BC V.

Let us show that B C U from which the result follow at once because the closure of a
balanced set is still a balanced set (cf. Proposition 3.10). Let 2 € B. Every neighborhood of z, in
particular =+ B, intersect B. Since (x4 B) N B +#(), by Lemma 3.21 we get that 2 € B+ B CU.
Actually, we proved that B C B+ B. In fact, suppose that = € B, then (z + B)N B # () and
therefore x € B+ B by Lemma 3.21. EECHE

In the proof of Proposition 3.23 we derived a couple of observations that deserve interest in
their own right.

3.24. Corollary. Let (X,V) be a topological vector space. For every U € V(0) there exists a balanced
set B€V(0) such that

B+B=B-BCU.
Also, if BeV(0) is a balanced set, then
BCB+B.

3.2.3. The topology defined by a filter basis

Given a filter base B on a vector space X, we want to understand under which conditions B
turns out to be a filter base of neighborhoods of the origin for a topology compatible with the
vector space structure. The topology being, then, the one having as filter base at x € X the family
B(x):=(x+ B)ges, i.e., V(z):=z+w(B(x)).

The following criterion answers to this question.

3.25. Proposition. [Assumptions|: Let B be a filter base on the vector space X satisfying the following
two properties:

FB,. Every B € B is absorbing and balanced.
FBa. For every B € B there exists a W € B (absorbing and balanced) such that

W+ W CB.

[Claim|: Then, there exists a unique neighborhood topology on the vector space X which is compatible
with the vector structure of X, and for which B is a filter base of neighborhoods of the origin.

The condition of being absorbing sets is
always satisfied due to property iv. of
Proposition 3.17.
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3.26. Remark. The unique vector topology V:z € X — V(z) C p(X) generated by I is then defined,
for any z € X, by V(z) =2+ w(B).

Proor. We have to show that the family F :=w(B) of supersets of elements in B satisfies the
properties 7. to v. of the structure theorem (cf. Theorem 3.17). Let us recall these properties.
FN;. (F is fixed at 0) The origin 0 € X belongs to any V € F. FNj. (Contindity at (0,0) of the
vector addition) For every V' € F there exists a W € F such that W + W C V. FN3. (Invariance
of F under nonzero homothétic transformations) For any (A, V) € K x F with A # 0, one has
AV e F. FNy. Every V € F is an absorbing set. FN5. Every V' € F contains another element of
the filter F which is balanced (and hence also an absorbing set due to FNy).

A closer inspection to the previous properties reveals that the only nontrivial statement to
prove is FN3 (for FN; recall that a balanced set can be empty, but an absorbing set must be non-
empty and, therefore, must contain the origin). For that, it is sufficient to prove the following
property, which is consequence of the assumptions FB1, FBy and of the properties of the field K:

FBs. For any (), B) € K x B with A\ # 0 there exists a B’ € B such that B’ C AB.

Indeed, if V isin F and B € B is such that B C V', then AB C AV and, by FB3, AV is a superset
of some B’€ B. Hence \V € w(B) = F.

Note that in FB3 we are not requiring that AB € B, but just that A\B can be reached by a
superset of an element in B.

To prove the previous assertion FB3 we observe that, by FBo, there exists a WWj € B such that _
The equality W 4+ W =2W holds when W

2W; € B. By induction on N, we get that for every n € N there exists W,, € B such that 2", C B. is convex. In general one has W + W D
Since B is balanced, and for some sufficiently large v € N one has 2* > |\| 71, the set B":=W, € B o

answers the question (i.e., satisfies FB3). Indeed, by construction |\|~!B’C 2B’ =2"W, C B,

and multiplying each side by |A| the assertion follows (cf. Proposition 1.24). EENE

3.3 | Limits of generalized sequences in topological vector spaces

Let X be a topological vector space, (x))ren a generalized sequence in X and x € limpyxy. As a
consequence of the invariance under translations of the neighborhood topology of X we get the next
result.

3.27. Proposition. For every generalized sequences (zx)xen, (Yn)aca in X we have that
lim zy +lim vy C lim () + . 3.9
A)\AJ)\_A(/\ Y) (3.9)
In particular, if limpy yyx# 0 (or if limp 2\ #0) then
lim (zy + =lim x) + lim v). 3.10
A(A Yx) im 2 + lim y (3.10)

Also, since enery constant generalized sequence converges, we have that for every y € X there holds
limp (y + 2z)) =y + limp xy. Therefore

x € li/r\nm)\ if, and only if 0€ li/r\n (xA— ). (3.11)
If X is not Hausdorff separated, the previous relations have to be understood as equalities between
sets, e.g.,

zelij{n(y—i—ac,\) = ze;y—i—li/r\nm)\. (3.12)
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In particular, {z } =limpaz) if, and only if, limp (z) — x) ={0}. This is always the case, for example,
when X is Hausdorff separated.

PROOF. (of (3.12)) Assume z € limpz) and y € limy yy. We then have (cf. Proposition 2.24)
(z,y) € lim (25, 4)

and, therefore, by the continuity of the vector sum, we conclude that = + y € limp (2 + y»). This
proves (3.9). In particular, if limy x) # (), then either () =1limp (x)+ ), and in this case trivially

li Cl li

im (zx+ua) C im 2 +lim y

from which (3.10) follows, or limy (2 + yx) # 0. But if limy (2 + yx) # 0 then, by (3.9), we have that
li —1i Cli — =i .
im (xx+yr) imz, € im (mA+yn—z») im g/

This concludes the proof because of the general remark that if A, B,C CX and A+ B CC with
A, B+, then ACC — B.

This concludes the proof. EETE

3.28. Remark. To show that (3.12) implies (3.11), we simply observe that

xeli[{nm)\ = meli[r\n(m—i—(x)\—x)) = xex—i—li{r\n(m)\—m) = Oeli[{n(x)\—x).

3.3.1. Continiity of a bilinear map

We state the following result in the form of a Lemma since it will be needed in the sequel as a tool
to prove important results in the context of locally convex spaces.

3.29. Lemma. Assumptions: Let X, Y and Z be topological vector spaces and let f: X xY—Z be a
map continuous at the point (0,0) € X xY. Claim: If f is bilinear then f is continuous everywhere
on XxY. In particular, let g: X—2Z be continuous at 0 € X, if g is linear, then g is continuous
everywhere on X.

Let us show that if A+ B CC with A, B#
() then A C C — B. Indeed, let a € A. By
hypothesis, for every b € B, there exists
ce Csuchthat a+b=c. Thus,a=c—be
C' — B. A more elegant proof is based on
the observation that the Minkowski sum
is associative so that AC A+ (B — B)=
(A+ B) — BC C — B, where the relation
A C A+ B — B always holds because of
0 € B — B. Note, however, that in gen-
eral it is not true that A C C — B implies
A+ B CC. Just think about balanced
sets for which B = —B. Then it is not
true that A C C' + B implies A+ B CC.
For example, in R?, if B is the unit ball
at the origin and C'={x} a singleton,
then it is not true, in general that A C
= + B implies that A+ B C {z}.
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Complete Spaces

3.30. Definition. Let X be a topological vector space and V(0) the filter of neighborhoods of the
origin. Let A be a subset of X and (x))\ca a generalized sequence in A. We say that the generalized
sequence (z))xea is a generalized Cauchy sequence (or a Cauchy net) if for every neighborhood
U €V(0) there exists a \g € A such that

Ty, —Tr, €U when {/\1,)\2}#)\0. (3.13)

Note that, if (3.13) holds then also x), — z), = —(x), — z,) € U. We say that the set A C X is
complete (resp. sequentially complete) if every generalized Cauchy sequence (resp. every ordinary
Cauchy sequence) in A converges towards an element a € A.

3.31. Remark. Note that if (A, <) is a meet-semilattice then condition (3.13) can be restated in
the following form: for every neighborhood U € V(0) there exists a A\, € A such that ), —x), €U
whenever A\ A g = A,

3.32. Remark. If A CX is a subset endowed with the subspace topology, then a generalized sequence
(ax)aen of elements of A is a Cauchy net with respect to the subspace topology of A if, and only,
if (ax)aen is a Cauchy net in X.

3.4.1. Simple consequences of the definition

3.33. Proposition. In a topological vector space, the following assertions hold:
1. Bvery convergent generalized sequence is a Cauchy net.
it. In a complete topological vector space any closed subset is complete.

212. In o Hausdorff topological vector space every complete subset is closed.

3.34. Remark. Point #i. can be stated by saying that the property of being complete is (like com-
pactness) weakly hereditary. Also, note that 7. claims that in a complete topological vector space
the closed subsets are included in the class of complete subsets, i.e., the closed subsets are particular
complete subsets. On the other hand #ii. expresses that, when the space is Hausdorff separated,
complete subsets are closed subsets. Therefore, combining #:. and #i2. we get that the class of closed
subsets of a complete and Hausdorff separated topological vector space coincides with the class of
its complete subsets.

PROOF. i. Let (x))rca be a convergent generalized sequence. The convergence of (z)))c means
that limpzy # 0; let = € limpxy. For an arbitrary neighborhood of the origin U € V(0), there exists
W eV(0) such that W — W CU. The existence of such a W € V(0) comes from Proposition 3.17
(cf. points #i. and v.). Then, since z € limpx), there exists A\g € A (depending on U) such that
xy, —x €W and x), —x € W when A; = Ao and A2 3= A\g. Hence ), —z), = (xx, — ) — (x\,— ) €
W — W CU. This shows that (x))yea is Cauchy because U has been chosen arbitrarily.

1. Let (ax)ren be a Cauchy generalized sequence in the closed subset A C X. We have
to show that () # A-limpay. We have already seen that A-limpay = A N X-limpay (cf. Proposi-

tion 2.23), in the sense that the two sets coincide when A is endowed with the subspace topology.
Thus, to prove that (ay),ea is convergent is equivalent to prove that

AN x—lij{na)\ % 0.

Recall that if X is not Hausdorff sepa-
rated there can be more than one limit

Here, we are appealing to Proposition 3.27
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Now, (ay)rea is also a Cauchy generalized sequence in X, and since X is complete and (ay) is
a Cauchy net in X, there exists © € X such that = € X-limpay. But A is closed and therefore
z € A. Hence, x € AN X-limpay.

i11. Let B be a complete subset of the Hausdorff topological vector space X. We have to
prove that B C B. For any = € B there exists a generalized sequence (by)yca of elements in B
such that

x € X-lim by.
A

Since (by)aen is convergent in X, according to point <., it is of the Cauchy type in X. But then,
(bx)aca is of the Cauchy type in B as well. Since B is complete, there exists b € B such that

be B—liin bh=DBnN x—li/{n by C :XZ—li)I\n ba.

Hence {b, 2} C X-lim) by and therefore necessarily b= because X is Hausdorff separated. Since
x € B is arbitrary we get B C B, i.e., B=B. EECHE

3.4.2. The principle of extension by contintity

In Proposition 3.10 we have shown that closure of a vector subspace is a vector subspace. Combining
this with Proposition 3.33 we get the following result that we state as a Lemma just for future
references.

3.35. Lemma. Let X be a topological vector space, MQX a topological vector subspace of X. Then
the closure M is still a topological vector space. In particular, if X is complete, then M is complete.

The next result permits to extend any linear and continuous map defined on a subspace of a
topological vector space, to a map defined on its closure, in such a way that it is still linear and
continuous. The possibility to consider an extension which is still linear makes sense because of
Lemma 3.35.

3.36. Theorem. Setting: Let X be a topological vector space, MX a topological vector subspace of
X, and Y a topological vector space. Assumption: Assume that f:IM—Y is a linear and continuous
map, and that the space Y is complete and Hausdorff separated. Claim: Then, the linear map f
can be extended (in a unique way) to a linear and continuous map defined on M.

3.37. Remark. A similar result holds in the more general context of uniformly continuous maps on
topological groups. For details cf. [LAWRENCE NARICI, EDWARD BECKENSTEIN, Topological Vector
Spaces, CRC Press, 2010| Theorem 3.6.2| p. 58].

PROOF.

Uniqueness: According to the principle of extension of the identity (cf. Proposition 2.39) if g¢:
M — Y is another continuous extension of f then the set {f =g} is a closed subset of M which
contains M (because f= g on M by assumption). The inclusions MC{f=g}={f=g} CM give
{f=g} =M because M is the smallest closed subset containing M.

Existence: The existence of such an extension of

MY

We could use the equality symbol in z =
limaby because X is Hausdorff separated

In a universe in which the closure of a
vector space is not a vector space, would
have been a non sense to talk of linear
maps defined on something which we
don’t know to be a vector space.

Let f, g be two continuous functions
defined in the topological space X and
taking values in the topological space Y.
If Y is Hausdorff (separeted) then the set
A={zeX = f(z)=g(x)} is closed. In
particular, if X, is a dense subset of X
which is included in A then f =g in the
full X because X = X, C A= A.
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is a consequence of the following observation.

Claim: Any topological vector space induces a naturaldirected set A having the following property:
For every ACX and any v € A, there exists a generalized sequence (ay)yen C A which converges to
x, i.e., such that x € limpa,).

Note that, a crucial part of the claim is that A depends on X but not on the choices of A CX
and z € A.

Proor. It is sufficient to take A as the filter V(0) of neighborhoods of the origin of X directed
by reverse inclusion. Then, given A C X and z € A, we build the generalized sequence ay: A — A
by choosing for every V € A :=V(0) an element ay € (x + V)N A. Clearly z € limyay with
(av)vev() € A EmeE

After that, let « € M. By the previous claim, there exists a generalized sequence (my)yer € M,
indexed by the directed set A :=)V(0), such that x € limym,. The generalized sequence (my)yea is a
Cauchy net in M. Since f is linear, (f(m)))xrea is a Cauchy net in the complete space Y. Therefore
y € limy f(my) for some y €Y. Actually, y=1limy f(m)) because Y is Hausdorff separated.

Claim: The value y =limy f(my) is well-defined as it does not depend on the generalized sequence
(mx)aen which converges to x € M (as far as we consider generalized sequence all defined in the
same directed set A). Thus, it remains well-defined the function

g:xeﬁtr—)yzzlij{nf(m)\)e‘d

PROOF. Let €M and (m))ren, (n))ren two generalized sequences such that both (1m,)yen —
x and (ny)rep — x, ie., such that = € (limymy) N (limpny). Then, we have my —ny — 0, i.e.,
0 € limp (my — ny). Since f is continuous and linear in M we get 0= f(0) = limp (f(m) —
na))aea = limp f(my) — limy f(ny). Hence

limf(my) =limf(ny).
im f(my) = limf (ny)
Note that the previous equalities are among elements of Y because Y is Hausdorff separated (by
assumption). EmeE
Claim: It is easy to show that g is linear and continuous on M and that gm = f-

PROOF. Let us first show that ¢ is linear. For any x1, zo € M there exist (m}\))\eA, (m?\))\EA such
that m)l\ — 21 and mg\ — x9. Hence, for every ai, as € K we have alm)l\ + ozgmi — 121 + Qa9 SO
that

glaiwy + agxs) = li/r\nf(alm}\ + ani)
= o hlrxnf(m/l\) + lei/{Ilf(m?\)
= a1g9(x1) + asg(z2).

Note that the argument works because we already proved that the value of ¢ does not depend
on the particular generalized sequence m: A — M defined in the directed set A.

Let us prove the contintity of g. It is sufficient to show that ¢ is continuous at 0 € M when
M is endowed with the subspace topology induced by X. Consider an arbitrary neighborhood
of 0in Y, let us call it . We have to show the existence of a neighborhood B € Vx(0) such that

g(BNM)CW. (3.14)
Let V' € Vy(0) such that
V4+VCW.

(mx)aea is convergent in X, therefore of
Cauchy type in X, therefore of Cauchy
type in M.

Recall the contintity criterion in terms of
generalized sequences
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Since f is continuous at 0 € M, there exists an open neighborhood U° of 0 in X (i.e, U € Vx(0))
such that

FUNM)C V.

To obtain (3.14) it is sufficient to set B :=U°, because, as we are going to prove, g(U°NM) C
V +V and this will complete the proof as V +V C V.

To this end, let 2 € U°N M. Since = € M there exists a generalized sequence (1my)yca with
values in M such that my — x. Since U° is an open neighborhood of x, one has my € U when
A= \1 for some \; € A. Hence my € U°NIM when \ = \; so that

f(my) Cf(U°NM)CV  whenever = \;.

On the other hand, g(z)=1imx f(m,) so that (since g(z)— f(my)— 0, one has g(x) — f(my) eV
eventually in \) there exists Ay € A such that

g(x) € f(mx)+V whenever =M.
Combining the previous estimates we get that, whenever \ = \; V A2 we have
glx)e f(my)+VCV+VCW.

By the arbitrariness of = € U°N M, we conclude that g(U°NM) C V.

It remains to prove that gp¢ = f. But this is trivial, because if m € M then the constant
generalized sequence m) :=m converges to m and, therefore, g(m)=1limpf(m)= f(m). HEIE

This completes the proof. EETE

3.4.3. Completeness in first countable topological vector spaces

Let us recall that a topological vector space is first countable if its topology satisfies the first axiom
of countability. This amounts requiring that the topological vector space admits a countable filter
basis of neighborhoods of the origin.

3.38. Proposition. Assumption: Let X be a topological vector space satisfying the first axiom of
countability. Claim: The space X is complete if , and only if , it is sequentially complete.

PRroo¥F. The nontrivial implication to prove is
(sequential completeness) = (completeness).

Assume X to be sequentially complete. Let (z))rcpn be a generalized Cauchy sequence, and let
B:= (U,)nen be a countable filter base of neighborhoods of the origin. By assumptions, for every
n € N there exists \,, € A such that

Ty, — Tpp € Uy, whenever {1, o} = Ap.

We have to show that there exists = € X such that « € limpx). To this end, we rearrange the ordinary
sequence (\,)nen into a new increasing sequence

Aine (N, <) AL e (A ),
ie., A\ = A\n, if n>m, with the further property that

A=\ Vin. (3.15)

Note that, the existence of such an open
neighborhood is guaranteed by Proposi-
tion 2.8.

Note that our directed set is a join-semi-
lattice and therefore we can condensate

the conditions A1 >= A and A3 = X\ in the

expression A = A1V Aa.
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In particular, for each v € N, we have
Ty: — N €Uy Ym,n > uv. (3.16)

In fact, we have even that xye, —xy €Uy NU2M - MU, but we don’t need this stronger remark for
the proof.

The existence of a sequence (\};),en satisfying (3.15) can be shown by induction. Given (A,)nen, set A\f:= Ay,
then choose A5 = {2, A1}, A5 = {3, A5}, and, in general, A}, = {\,,, A, _1}. Note that, by construction, if {1, us} = A5
then {1, po} = A; for each i <v and, therefore, z,, —x,, € UyNU>N--NU,.

After these premises, if we define an ordinary sequence in X, by extracting a subsequence from
(zx)aea through the assignment

Yn:=x) VneN, (3.17)
by (3.16), we have that for each v € N
Yn— Ym € Uy, Ym,n>v (3.18)

Thus the (ordinary) sequence (y,)nen is a Cauchy sequence because for every U € V(0), there exists
a set U, €V(0), U, CU, such that v, — y,,, € U, for every m,n > v.

Since X is sequentially complete, (y,)n,en converges to at least one point y € X. Thus, the
point y € X is the natural candidate for a possible limit of (x))xrea.

Claim: We claim that the generalized sequence (x))ren converges to y. Showing this will conclude
the proof of the main statement.

Let U € V(0). By the structure theorem and the first axiom of countability, there exists a
balanced set B € V(0) and v € N such that

U,+U,CB+BCU. (3.19)
We want to prove the existence of an index A\, € A, such that
xxa—y €U, whenever 3=\ (3.20)

To that end we use the decomposition

Tx—y= (2= Yn) + (Yn— ) (3.21)

with n sufficiently large so that (y, — y) € U,, and it remains to prove that, eventually,

(zx— yn) €U, (3.22)

Before proving this, let us point out that the n sufficiently large has to be specified better. Indeed,
in view of the next step (i.e., to prove that also (z) — y,) € U,), we have to take n >v. Thus, let us
agree that we choose n > v and big enough so that (y, — y) € U,.

After that, we note that x) — 1, =2\ —x)+ belong to U, as soon as A, An = Ay. But we already
know that A}, = A\, because of n > v (which implies A}, = A}, = A\,, cf. (3.15)) Therefore, to conclude
we have to set A\.:= )\, in (3.20). EENE
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The notion of bounded subset in topological vector spaces

Bounded sets, as we will see, play a central role in defining locally convex topologies on vector spaces
that are in dual pair. Indeed, the polar set of a bounded set is a convex, balanced and absorbing set.

3.39. Definition. Let X be a topological vector space, not necessarily Hausdorff separated. We say
that a subset of X is bounded (in X) if it is absorbed by every neighborhood of the origin. In other
words, a set A C X is bounded if, and only if,

YU € V(0), Ja >0 :: A C AU whenever |\| > a. (3.23)

3.40. Remark. Note that we obtain an equivalent definition if we replace the sentence «absorbed
by every neighborhood of the origin» by the sentence «absorbed by every neighborhood of a fun-
damental system of neighborhoods of the origin» (cf. Proposition 3.42). In particular, according
to Proposition 3.23, we can always test boundedness on a fundamental system of neighborhoods of
the origin B(0) consisting of balanced sets. In this case, thanks to Proposition 1.24, we can replace
(3.23) with the simpler condition

VB eB(0), Ja>0: ACaB.

Example 3.41. Note that, by definition, the emptyset is always bounded. Also note that if X is
bounded, then for every U € V(0) there exists A\ € K such that XCAU. Hence X =\"'X C U.
But this means that X is the unique neighborhood of the origin, i.e., that X is endowed with the
indiscrete topology (which, as it is easy to show, is compatible with every vector space structure
and, therefore, a vector topology).

Historical note. Bounded sets of a topological vector space are also called VON NEUMANN bounded sets. The
concept was first introduced by John von Neumann and Andrey Kolmogorov in 1935.

3.5.1. Immediate consequences

3.42. Proposition. Let (X,V) be a topological vector space and A a subset of X. The set A is bounded
if, and only if, A is absorbed by every neighborhood of a fundamental system of neighborhoods of
the origin.

PRroOF. The only if part is trivial. Let us prove the if part. Let us denote by B(0) a fundamental
system of neighborhoods of the origin for X. Let U €1(0). By assumption, there exists B € 3(0)
such that B CU. Since A is absorbed by B, it is also absorbed by U. EENE

3.43. Proposition. Let M be a topological vector subspace of X and let ACIM. The set A is bounded
in X if, and only if, it is bounded in M.

PROOF. Suppose that A is bounded in X and that A C M. Let Upg € V be a neighborhood of
0 €M in M. By definition, this means that there exists some U € Vy such that Upc=M NU.
By assumption, there exists a > 0 such that A C AU for |\| > a. But then, for every |[\| > a, we
also have

A=ANM C (AU)NM = AUNM) = AUnc.

‘We talk about topological vector subspace
when the subspace is endowed with the
subspace topology indced by M
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In other words, A is absorbed by Usg.

On the other side, suppose that A is bounded in M. Let U be a neighborhood of 0 in X.
Clearly, U N M, is a neighborhood of 0 in M. By hypothesis, A is absorbed by U N M and
therefore by U too (because U DU NM). [ [ B |

3.5.2. Topological operators and boundedness

3.44. Proposition. In a topological vector space, the following assertions hold:
1. FEvery singleton is a bounded subset.

11. Fvery subset of a bounded set is bounded. In particular, the intersection of any family of
sets is bounded whenever at least one of the elements of the family is bounded.

222. The union of a finite number of bounded subsets is still a bounded subset. In particular, taking
wnto account i., we get that every finite subset of a topological vector space is bounded.

iv. The closure of a bounded subset is still bounded.
v. FEvery (ordinary) Cauchy sequence is bounded.

vi. Fvery compact subset is bounded.

3.45. Remark. Recall that in an (Hausdorff) separated topological space, any compact subset is
necessarily closed. Therefore vi. is the topological vector space counterpart of the well known result
valid in metric spaces: Let (X,d) be a metric space and A a subset of X. If A is compact then A
is closed and bounded.

PRrOOF. 7. This is a consequence of the structure theorem (cf. Theorem 3.17). Indeed, according
to FNy, every neighborhood of the origin is absorbing, that is, every point of X is absorbed by
a neighborhood of the origin.

1¢. This is trivial, because the property that a set absorbs another set is inherited by its supersets.

114. Again, we make use of the structure theorem (cf. Theorem 3.17). Indeed, let A; and Ay be
two bounded subsets of X. According to FN5 and Proposition 3.42, it is sufficient to show that
any balanced neighborhood of the origin V' € V(0) absorbs A; U As. To this end, it is sufficient to
prove that oV D A; U Aj for some o >0 (thanks to Proposition 1.24, point 2.). By assumption,
there exist oy >0, ag > 0 such that o1V O A7 and asV D As. We set o= a1 V avp and we conclude
that aV DoV UasV D AU As.

1v. We make use of the regularity property of the topology as stated in Proposition 3.23: There
exists a fundamental system of neighborhoods of the origin, let us call it 53(0), consisting of
closed sets. Let A be a bounded subset of X and F' an element of 5(0). By definition, since A
is bounded, it is absorbed by F. Hence, A is absorbed by F'= F'. The arbitrariness of F' proves
that A is bounded. The general remark here is that in a topological vector space if B absorbs
A, then B absorbs A (in fact, A C AB implies A C AB from which A C\B).

v. Let V' be a neighborhood of the origin. There always exists (thanks to Theorem 3.17, con-
ditions FNy and FNj5) a balanced neighborhood of the origin such that B + B C V. Since the
sequence (z,),en is Cauchy, there exists v € N such that =, — z, € B whenever p,¢>v. As B is

Recall what FN5 states: Every V € F con-
tains another element of the filter 7 which
is balanced (and hence also absorbing set
due to FNy4)

Another way is to use the relation AB =
AB which follows by the continuity of the
scalar multiplication.
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absorbing, it absorbs x,, that is, there exists o > 0 such that =, € aB. Without loss of generality,
we can assume « > 1. But then, for p > v, we have

rpex,+B C aB+B
(xas B is balanced and a>1x) C aB+aB
= «o(B+B)
Cc aV.

This shows that the set {x,,2,41,...} is bounded. But also the set {xq,z1,...,2,_1}, being a finite
subset, is bounded. Overall (x,,),cn is bounded being the union of two bounded subsets (cf. 73.).

vi. Let K be a compact subset of X, U an open and balanced neighborhood of the origin. Clearly,
since U is also absorbing, for every = € X there exists n € N such that x €nU. Thus U,,cnynU =X.
Hence, the family (nU),cn is an open cover of the compact set K. We can extract from the
family (nU),en a finite subcover {n1U,noU,...,n U } of K. Then, we set n,:=sup {ni,...,n;}
and we observe that K Cn.,U because U is balanced. Hence, K is absorbed by U. Since the family
of open and balanced neighborhoods of the origin is a fundamental system of neighborhoods of
the origin, we conclude. EETE

3.5.3. The continuous image of a bounded subset

3.46. Definition. Let X and Y be two topological vector spaces. A map f: X—Y is called a bounded
map if f(B) is a bounded subset of Y for any bounded subset B of X. A bounded operator is not
necessarily a continuous or a linear operator.

3.47. Remark. It is possible to show examples of nonlinear operators f: X—K, with X a Hilbert
space, which are continuous but not bounded. However, if X is locally compact (and, therefore,
necessarily finite-dimensional by a well-known theorem of Riesz) then the continuity of f implies its
boundedness. In fact, if X is locally compact and B is bounded, then B is absorbed by a compact
neighborhood of the origin & whose image, by the continuity of f, is compact in Y and, therefore,
bounded in Y (because of Proposition 3.44).

Given that, in general, it is not true that continuity implies boundedness, it is of some interest
the next result which, in particular, applies to seminorms and to continuous linear maps.

3.48. Proposition. Let X and Y be two topological vector spaces, f:X—Y a map continuous con-
tinuous at 0 € X, and B a bounded subset of X. The image f(B) is bounded in Y if at least one
of the following two conditions holds:

i. The map [ is 1-homogeneous: f(\x)=\f(x) for every (\,z) e K x X.
1i. The map f is circled homogeneous: f(Az)=|\|f(x) for every A € K.

Circled homogeneous maps are often referred to as absolutely homogeneous maps.

3.49. Remark. In general, a seminorm on X is not necessarily continous. However, the previous
result implies that if a seminorm is continuous, then it maps bounded subsets of X into bounded
subsets of R.

Recall that, if A is a balanced set then
AA =|X|A for all X € K. Moreover, AA =
INMA C|p|A= pA whenever |A| < |p]

An open and balanced neighborhood of
the origini always exists. Indeed, the inte-
rior of a balanced set B is balanced if

0 € B?, and therefore the interior of a bal-
anced neighborhood is a balanced neigh-
borhood
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PRroOOF. Let B be a bounded subset of X. To prove our statement, it is sufficient to show
that f(B) is absorbed by any balanced neighborhood of 0 € Y. For that, since f(0)=0 by
homogeneity, we consider a balanced neighborhood V of 0 € Y and we observe that by the
contintiity of f at 0 € X the preimage U := f (V) is a neighborhood of 0 in X. Since B is
bounded, this neighborhood U has to absorb B. Thus, there exists o > 0 such that B C AU for
any |[\| >« and, therefore,

f(B)C f(AU) for any |\| > a. (3.24)

On the other hand, note that f(AU)=Af(U) if f is 1-homogeneous and f(AU)=|A|f(U) if f
is absolutely homogeneous. Hence, as f(U) C V, in both cases we have that

FONU) C AF(UYUIAF(U) € AVUA|V. (3.25)

But V is balanced and this implies that AV = |\|V. Therefore, combining (3.24) and (3.25) we
conclude that f(B) C AV for any |A\| > a and this proves that f(B) is bounded in Y.  mE=E

3.5.4. Mackey Lemma on bounded sets

This section is devoted to the proof Mackey” ! lemma concerning a remarkable property of bounded

subsets in a topological vector space. The result was stated, by Mackey, as a lemma to show that

a subset of a locally convex topological vector space is bounded if and only if it is weakly bounded.

3.50. Lemma. Let X be first countable topological vector space, i.e., a topological vector space that

admits a countable filter base of neighborhoods of the origin. Let (Bi)ren be a sequence of bounded

subsets of X. Then, there exists a bounded and balanced subset B of X and a sequence (\;)ren

of positive numbers, such that

B, C B for all k€N.

PRrOOF. Let (V})jen be a countable filter base of balanced neighborhoods of the origin. For
every k€N, the set B}, is bounded and therefore absorbed by any element of (V});en. Thus, to
each k €N, it is possible to associate a sequence (o j)jen of positive real numbers in such a
way that By C oy ;Vj for all j € N. Next, we set (3 :=maxi<r<jay,; so that

By, C 5;V; for every (k,j)eNxN:uk<j.

The construction is sketched in the following table.

C Vi Vo Vi oo Voo e

By |1 |oaagfars| - |Qin| - - a1 ajl|aiz|ars| | ain
By |ag1|aga|ags| - |agn| - - az; 1 |aga|ags| | aon
B3 |asz1 asza|ass| - |Qgn| - as; B | |azs| | asn
: : : P g : B | :
By, An,1 Qp2 Qnp3 | Opnp| " 0 Qpgj B3 On.n
Qg1 Q2 Qg3 0 Qgp o O B

3.1. George Whitelaw Mackey (February 1, 1916 — March 15, 2006) was an American mathematician. Mackey earned

his bachelor of arts at Rice University (then the Rice Institute) in 1938 and obtained his Ph.D. at Harvard University in 1942
under the direction of Marshall H. Stone. He joined the Harvard University Mathematics Department in 1943, was appointed

Landon T. Clay Professor of Mathematics and Theoretical Science in 1969 and remained there until he retired in 1985.
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On the other hand, for every k& € N there exists A\; > 1 such that «aj ; < \if3; for every j <k.
Hence By, C oy, ;V; € M35V for every (k,j) € N x N k> j. This second step is sketched in the

next table.
C i V5 Vs e Vo,
B | B |an2 a13 - o1 - o1 B | =M
By |ag1 P2 |az3 - o, - o az1 Ba | =X
Bz |az1 azp P3| azn - o3 az1 o3 P3| =3
B, Qn 1 Qp 2 Qp3 Bn | Qn,j |05n,1 Qn2 Qp3 - /8n|_>/\n
k1 Qr2 Q3 o Qg o Ok

.. ) Note that, it is in order to have Bj C
Summarizing, we get that Bj, C \;3;V; for every (k, j) € N x N. Therefore, for every k € N ARB,V; for every (k,j) €N x N that we

have chosen A\p > 1.

B CA\B with B::ﬁjgn\],@j‘/j.

The set B is bounded due to Proposition 3.42. Indeed, B C 3,V for every j € N, and this means
that B is absorbed by each of the balanced set V. This concludes the proof. EENE

3.51. Remark. The proof of Mackey lemma is straightforward in the context of normded vector
space, as in any normed space there exists a countable filter base of bounded neighborhoods of the
origin. Indeed, in the proof of Mackey lemma we have considered a filter base (V;);en of balanced
neighborhoods of the origin, and if at least one of the them, say V5, is bounded then the proof is
immediate as one has By C . 2V5 for every k£ € N so the it is sufficient to set B := V5. On the other
hand, the existence of a bounded neighborhood of the origin is intimately related to the normability
of the topological vector space. In fact, it is possible to prove that any Hausdorff separated locally
convex space (see Definition 4.1), for which there exists a bounded neighborhood of the origin, is
normable (cf. Section 4.3.3 for the definition of normable topological vector space).
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Seminorms defined on topological vector spaces

We have given the notion of seminorm in Section 5 when we were in the (purely algebraic) context
of vector spaces. Here, we remind some of the definitions in there given.

Reminder. Let X be a vector space over the field K (with K=C or K=R). A function p: X — R{ defined on the vector
space X is called a seminorm if: » p is subadditive, that is, p(x + y) <p(z) +p(y) for all z,y € X. » p is circularly
homogeneous, that is, p(Az) =|\|p(z) for all A€ K,z € X. The value p(z) of p at x € X is often denoted by the symbol
|z|p. » The sets Bo:={zx € X up(z) <1} and Be:={x € X ::p(x) <1} are called, respectively, the open unit semiball
of p and the closed unit semiball of p. Sometimes we shall also refer to them as the seminormed open unit ball and
the seminormed closed unit ball. » To stress the nomenclature is important. Indeed, the qualifications open and
closed given in this context are not topological, as we are in a pure algebraic setting. Moreover, even if X is endowed
with a topology, it is not always the case that B, = B,, i.e., that the topological closure of the open unit semiball of
p coincides with the closed unit semiball of p. » A seminorm p, such that p(z) %0 whenever z #0 is called a norm on X.

Note that, when X is a topological vector space and p: X—R{ is a seminorm, it makes sense
to investigate if, and under which circumstances, p is continuous on X. Indeed, not every seminorm
is necessarily continuous, as illustrated by the following example.

Example 3.52. (Discontinuous seminorms) We want to show that, in every infinite-dimensional
normed vector space, there exist discontinuous seminorms. This is a consequence of the following
result.

3.53. Proposition. Let X be a nontrivial (X#{0}) normed vector space over K. The following
assertions hold: i. A linear functional on X is discontinuous (unbounded) if, and only if, its kernel
is a dense (proper) subspace. i. If (X, |||) is an infinite-dimensional normed space, then there
exists a discontinuous linear function f: X — K.

3.54. Remark. Note the stress on the «proper» subspace. This condition is necessary because
otherwise the null functional would be a counterexample. Actually, condition 7. can be equivalently
restated as: Any linear functional f: X — K, is discontinuous if, and only if, ker f =X and f#0.

PROOF. 4. The result is well-known. One implication, namely that if f is continuous then xor f =0 xor ker f is
a proper subspace of X, is trivial because the kernel of a continuous functional is a closed subset. Therefore, let
us prove the following statement. Namely, that if ker f is a proper subspace of X then f is continuous and not
identically zero. To this end we use the following observation, whose proof can be found in Theorems 1.24.16/17,
p. 14 in [GILES, J. R., Introduction to the analysis of normed linear spaces. Cambridge University Press, 2000].

3.55. Proposition. In a normed vector space (X, ||-||), the kernel of a nonzero linear functional is either closed or
dense. Moreover, a linear functional on X is continuous if, and only if, ker f is closed.

Indeed, once established the previous result, we can argue as follows. By the previous proposition, we know

that ker f can be either closed or dense. But by assumption, ker f is a proper subspace of X and therefore cannot
be dense in X. Thus, ker f must be closed. Again, by the previous proposition, f is continuous.

2t. Let us first recall that if X is a vector space over K, a subset of X is linearly independent if whenever a
finite linear combinations of elements of B is zero, then all coefficients are necessarily zero. Also, we say that B is
a Hamel basis in X if B is linearly independent and every vector = € X can be obtained as a linear combination
of vectors from B. This is equivalent to the condition that every x € X can be written in precisely one way as
EiEJCZ’ x; where (¢;);ier CK, (2;);er € B and J C I has finite cardinality.

Many properties of bases which hold in the finite-dimensional setting remain true in the infinite-dimensional
case as well. In particular: = Every vector space has a Hamel basis. In fact, every linearly independent set is
contained in a Hamel basis. = Any two Hamel bases of the same space have the same cardinality. = Choosing
images of basis vector uniquely determines a linear function, i.e., if B is a basis of X then for any vector space
Y and any map fz: B—Y there exists exactly one linear map f: X —Y such that fjz= f5.

Georg Karl Wilhelm Hamel (12 Sep-
tember 1877 — 4 October 1954) was a
German mathematician with interests
in mechanics, the foundations of math-
ematics and function theory. Hamel was
born in Diiren, Rhenish Prussia. He
studied at Aachen, Berlin, Gottingen, and
Karlsruhe. His doctoral adviser was David
Hilbert.
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After that, choose a countably infinite linearly independent set {z,}nen in (X, [|]|) such that ||z,[|=1. A
countable linearly independent set exists because X is infinite-dimensional. Moreover the normalization process
does not alter the linear independence of the system. Also, there exist a Hamel basis B containing {x,,},cn and
a linear functional f: X — R such that f(z,)=n for enery n € N and f(b) =0 for every b€ B\ {z,},en. This
linear function is obviously discontinuous (unbounded) because the image under f of the bounded set {z,},cn
is not bounded. EETE

We can now give an example of discontinuous seminorm. Consider any infinite-dimensional
normed vector space X, and denote by f a discontinuous linear functional on X. For every z € X we
set p(z):=|f(x)|. Clearly p is a seminorm on X and kerp=kerf. Also ker f is dense in X because
f is discontinuous. It follows that p cannot be continuous because, otherwise, ker f is closed other
than dense in X (as ker p =kerf) and therefore f=0.

3.6.1. Set inclusions among unit semiballs of seminorms (continuous or not) in topological vector
space

3.56. Lemma. Let p be a seminorm (not necessarily continuous) on a topological vector space X.
Let B, and B, be, respectively, the open and closed unit semiballs of p. We then have

(Ba)° € BoC By C B,

Notation: the right superscript ° in (Bs)° stands for the topological interior, while the over-bar in
B, stands for the topological closure.

3.57. Remark. Roughly speaking, if the seminorm p is not continuous then the topological interior
operators can remove too many points from B,, and the topological closure operator can add too
many points to Bo.

3.58. Remark. From Lemma 3.56 it also follows that B, = Be and (B,)° = (B,)°. It is sufficient to
pass to the closures and to the interiors in the relation (Bs)° C Bo C Be C Bo.

PrRoOOF. » The inclusion B, C B, is trivial. It is sufficient to expand the meanings: B, =
{reXup(r)<l}and Be={xcXup(z)<1}.

» Let us show that B, C Bo. For any = € B, we have that = /(1 +¢) € B, for every £ > 0. Passing
to the limit for £ — 0, taking into account the contintity of the map (A, z) — Az, we get that

T e—0

1+¢

xT.
Hence, x € B..

» Let us show that (B,)° C B,. We want to use the same argument used for the inclusion
Be C B,. To this end, we pass to the complement, and show that (B,)®C ((B,)°)®. First, note
that ((Bs)°)t = (B,)® so that it is sufficient to prove that

(Bo)® C (B)°,

with (Bo)®={z € X up(x) > 1} and (B.)®={z € X x=p(x) > 1}. For any z € (B,)® we have
(1+&)z € (B,)® for every e > 0. Passing to the limit for £ — 0, taking into account the contintity
of the map (A, z)+— Az, we get that

(1+¢e)z 0

Hence, = € (B,)°. EmnE
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3.6.2. Properties of the unit semiballs of continuous seminorms in topological vector space

In this section we investigate the case in which X is a topological vector space and p: X—R] is
a continuous seminorm, that is, a seminorm satisfying the further condition that p(z)) — p(x)
whenever (x))rea is a generalized sequence converging to = (more precisely, such that = € limp z)).

3.59. Proposition. Let p be a continuous seminorm on a topological vector space. Then:

1. The open unit semiball of p, Bo, is a topologically open set. We already proved that it is also
a convex, balanced, and absorbing set (regardless of the continiity of p, cf. Proposition 1.47).

1t. The closed unit semiball of p, Be, is a topologically closed set. We already proved that it
is also a convex, balanced, and absorbing set (regardless of the continiity of p, cf. Proposi-
tion 1.47).

i4i. The topological closure of Bo is Be. In symbols: B, = B,.

. The topological interior of Be coincides with Bo. In symbols: (Be)° = B..

Notation 3.60. If p is a continuous seminorm on the topological vector space X, there is no need
anymore to distinguish between Be and Bo, as well as B, from (B,)°. But still, one can work with
two (or even a family of ) continuous seminorms defined in X, and then it becomes important to
distinguish among different unit semiballs. Therefore, we shall also denote the open unit semiball
of p by By and the closed unit semiball of p by By. Sometimes, we will also use the notation Be(p)
and Bs(p) to denote, respectively, the closed and open unit semiballs of .

PRrOOF. By assumption p is a continuous function defined in X and with values in the field of real
numbers endowed with the standard euclidean topology.

i. It is sufficient to note that B, is the preimage (under p) of the open interval (—1,1) C R.
1. It is sufficient to note that B, is the preimage (under p) of the closed interval [—1, 1] C R.

i13. From the inclusion B, C Be we get Bo C Be = Be because B, is a closed set. As Be(p) C Bo(p)
for every seminorm p (cf. Lemma 3.56) we deduce that B, = B,.

tw. We have B, C B, and therefore (B,)° = B, C (B,)°, because B, is open. Since (Be(p))° C Bo(p)
for every seminorm p (cf. Lemma 3.56) we deduce that (B,)° = B.. EENE

3.6.3. Characterization of continuous seminorms

The next result, fully characterizes the continuity of a seminorm defined on a topological vector

space in terms of simpler conditions.

3.61. Proposition. Let p be a seminorm on a topological vector space X. The following four assertions

are equivalent:
i. The open unit semiball B, of p is a topologically open set of X.

1. The closed unit semiball B of p is a neighborhood of the origin (a fortiori, due to Proposi-
tion 3.59, it must be necessarily a topologically closed neighborhood). In symbols: Be € Vo (0).

13t. The seminorm p is continuous at the origin. In terms of generalized sequences: If (z))ycar—
0 then (p(zy))renr —p(0)=0.

Recall that for any seminorm p we neces-
sarily have p(0) =0
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w. The seminorm p is continuous everywhere in X.

PROOF.

[¢. implies #2.] The closed unit semiball contains the open unit semiball B, which is an open
neighborhood of the origin. Hence, B, is a neighborhood of the origin.

[22. implies 723.] Let J.:=[—¢,¢] be a neighborhood of Og in R. The preimage of J. under p is the
semiball £B, which is a neighborhood of 0 in X due to the invariance of Vx(0) under non-zero
homotheties. Hence, p is continuous at 0 € X.

[222. implies 4v.] Let (z))xea be a generalized sequence converging to = € X. Since (z))ren — = in
X, (xx—x)renr— 0 in X. But then, p(x) — x) — 0 because, by assumption, p is continuous at 0 € X.
By the reverse triangular inequality, we get

p(z2) —p(@)| <plza—z) = 0.
Hence, p(z)) — p(z).

[tv. implies 4.] It is an immediate consequence of Proposition 3.59. EENE

3.6.4. The gauge of a barrel set (tonneau)

Let us start by giving the definition of a barrel set, also referred to as a tonneau in Bourbaki’s
terminology.

3.62. Definition. In a topological vector space, we call barrel (or barrelled set, or tonneau) every
set which is absorbing, balanced, convex and closed.

3.63. Remark. Note that the definition of barrelled set cannot be given in a purely algebraic vector
space, simply because we require a barrel to be (topologically) closed. All the other requirements
are, instead, purely algebraic.

Example 3.64. The closed unit ball By of a continuous seminorm p is a barrelled set. More gen-
erally, the topological closure of the open (or closed) unit semiball B, = B, of a (not necessarily
continuous) seminorm p is a barrelled set (because the topological closure retains the properties of
being absorbing, balanced, and convex).

3.65. Proposition. Let T" be a barrel in a topological vector space X. Then:

. There exists a seminorm p (not necessarily continuous) on X, and just one, such that Be
coincides with T. Such a seminorm is nothing but the gauge pr of T. We say that p is the
seminorm generated by the barrel T.

it. The seminorm generated by the barrel T is continuous if, and only if, T is a neighborhood of
the origin.

3.66. Remark. It is important to compare Proposition 3.65 with the content of Proposition 1.51.
In Proposition 1.51 we showed that if A is an absorbing, balanced, and convex subset of a vector
space X, then the gauge p4 of A is a seminorm. But in general, this seminormdoes not retain full
information about A, in the sense that if we only know p4 then we do not know if p4 come from
A or any other subset B in between Bo(ps) and Be(pa). Here, in the context of topological vector
spaces, we have that if A is also closed, then A can be recovered through its gauge, because, in this

case, pa = Ba(pa).
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PROOF. 4. Let p; and p2 be two seminorms having 7" as closed unit semiball, that is, such that

Be(p1) = Be(p2) =T

Due to Corollary 1.53, necessarily p; =p2. This shows the uniqueness of the seminorm.

Let us show the existence. It is sufficient to take p as the gauge of T', that is, to set

pi=pr.

Indeed, we already showed, in Proposition 1.51, that pr is a seminorm on X such that

Bo(pr) €T C Bo(pr).

Taking the topological closure we then get Bo(p7) CT =T C Be(p7). On the other hand, Lemma 3.56

shows that Be(pr1) C Bo(pr). Hence, Bo(p71) CT C Be(p7) C Bo(pr) and this shows that 7'= Be(pr) =
Bo(pr).-

#1. It is a consequence of the characterization of continuous seminorms stated in Proposition 3.61.

Indeed, p = pr is continuous, if, and only if, the barrelled set 7', which coincides with Be(p7), is a
neighborhood of the origin 0 € X. EENE

3.6.5. Equivalence of the barrelled neighborhoods of the origin and the closed unit balls of contin-

uous seminorms

Given a topological vector space X, we call barrelled neighborhood of the origin any barrel belonging
to Vx(0).

3.67. Proposition. Let T be a subset of X. The following two statements are equivalent:
1. The set T is a barrelled neighborhood of the origin;

1i. The set T is the closed unit semiball of some continuous seminorm on X (namely, of the
gauge pr of T).

PROOF. It is a direct consequence of Proposition 3.61 and Proposition 3.65. EENE

Reminder (Corollary 1.53) Let p; and p2
be two seminorms defined on the same
vector space X and having the same
closed unit semiball (or the same open
unit semiball). Then, the two seminorms
are identical: p; = po.

Reminder (Proposition 1.51) Let X be a
vector space and A C X. The following
assertions hold: 7. If A is the open (or
closed) unit semiball of a seminorm p on
X, then the gauge of A coincides with p.
In other terms: p=pa. 7i. If Aisaconvex,
balanced and absorbing subset of X, then
the gauge pa induced by A is a seminorm.
Moreover, Bo(pa) C A C Be(pa).






4.1

LocALLy CONVEX (TOPOLOGICAL VECTOR) SPACES

History. Metrizable topologies on vector spaces have been studied since their introduction in MAURICE FRECHET’s
1902 Ph.D. thesis Sur quelques points du calcul fonctionnel (wherein the notion of a metric was first introduced).
More precisely, on p. 18, he writes:

«Considérons une classe (V) d’éléments de nature quelconque, mais tels qu’on sache discerner si
deux d’entre eux sont ou non identiques et tels, de plus, qu'fi deux quelconques d’entre eux A, B, on
puisse faire correspondre un nombre (A, B) = (B, A) >0 qui jouit des deux propriétés suivantes: 1° La
condition néessaire et suffisante pour que (A, B) soit nul est que A et B soient identiques. 2° II existe
une fonction positive bien déterminé f(c) tendant vers zéro avec e, telle que les inégalités (A, B) <e,
(B, C) < e entrainent (A, C) < f(e), quels que soient les éléments A, B, C. Autrement dit, il suffit que
(A, B) et (B, C) soient petits pour qu’il en soit de méme de (A, C'). Nous appellerons voisinage de A
et de B le nombre (A, B).»

FELIX HAUSDORFF introduced the notion of topological space in 1914. Although some mathematicians implicitly
used locally convex topologies, it dates back to VON NEUMANN, in 1935, the general definition of a locally convex
space (called a convex space by him). For further details, we refer to [VON NEUMANN, J. Collected works, Vol II.
p. 508-52] and [DIEUDONNE, J. History of Functional Analysis, Chapter VIII, Section 2|.

Definition, construction, and characterization of locally convex spaces

4.1. Definition. Let X be a vector space. We say that a topology on X is locally convex at = € X,
if it admits a fundamental system (basis) of neighborhoods of 2 consisting of convex sets. We say
that a topology on X is locally convex if it is locally convex at any x € X. Note that we do not
require a locally convex topology any compatibility with the vector space structure on X.

A topological vector space (X,V) is called a locally convex space (LC TVS space) if its neighborhood
topology V is locally convex. It is immediate to see that, equivalently, (X, V) is a locally convex
space if it admits a filter base of neighborhoods (just) of the origin consisting of convex sets, i.e., if
V is locally convex at Ox.

Example 4.2. Every normed vector space is a locally convex space. A locally convex topology on
a vector space X needs not to be compatible with the vector space structure. A simple example
arises when X is a nontrivial vector space and V the discrete topology on X. In this case, (X,V) is
not a topological vector space. Nevertheless, for every = € X, the singleton {{x}} is a fundamental
system of neighborhoods of = consisting of convex sets.

71

For topological vector space to be a
locally convex space it is sufficient to
impose that its topology is locally convex
at the origin.
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It is natural to investigate under which conditions a filter base on a vector space, consisting of
absorbing, balanced and convex sets, induces a locally convex topology compatible with the vector
space structure. In that regard, we have the following result.

4.3. Proposition. Assumptions: Let X be a (purely algebraic) vector space and B a filter base on
X consisting of sets which are at the same time, absorbing, balanced, and convex (note that any
element of BB, being absorbing, has to pass through the origin).

Claim: The filter base B is a fundamental system of neighborhoods of the origin for a topology on
X compatible with the vector structure on X (and locally convez), if, and only if,

YUeB,VpeRy, IWeB::WC)pU. (4.1)

Note that, in order to satisfy (4.1), W can be chosen dependent both on p and U.

4.4. Remark. Note that if S is any family of subsets of X then the family
B:=U\er: AS:={A\F = (\,5) €eR} xS}

satisfies (4.1). Indeed, if U € B then U = AS for some (A, S) € R*. x S and therefore, for any p >0 it
sufficient to set W = pAS to get W C pU (actually, W = pU). Note that we are not assuming any
geometric hypothesis on the elements of 5 (e.g., absorbing, balanced, or convex).

On the other hand, in general, the family

Byi=Upen %S - {7115 : (n,5) €N x 5}
doe not satisfy (4.1).

For example, if X =R? and S = {S'} then given S' € B; and p =7 there exists no element %Sl € By
such that %Sl C 7S'. However, if S={D,} then given any %]D). € By and any p >0, it is sufficient to

set W = ﬁﬂ), to get that W C L]D). = 7—’2]1]).. Note that the singleton {D, }, as any other singleton

n/p

consisting of a nonempty set, is a filter base (cf. Example 1.71).

Note that D, is a balanced set and, in fact, everything always works when S is a family of balanced
subsets of X: if S is any family of balanced subsets of X, then By satisfies (4.1). Indeed, given any

1se B; and any p >0, it is sufficient to set W=—1_5to get that W C 25,
n [n/p] n

PRroOF. Necessity: If X is a locally convex topological vector space then, pU is an element of V(0)
for any (p,U) € R% x V(0) (this is nothing but the homothétic invariance of V(0) stated in the
structure Theorem 3.17). Since B is a filter basis for V(0), and pU € V(0), pU contains an element
WeB.

Sufficiency (assume that (4.1) holds): We will make use of Proposition 3.25 whose statement we
recall here:



4.1 DEFINITION, CONSTRUCTION, AND CHARACTERIZATION OF LOCALLY CONVEX SPACES 73

If the filter base B is such that: FB1. Every U € B is absorbing and balanced; ¥By. For every
U € B there is W € B (absorbing and balanced) such that W + W C U; then, there exists, and is
unique, a topology on X that is compatible with the vector structure of X and for which B is a filter
base of neighborhoods of the origin.

Clearly, we only have to prove that if (4.1) holds, then FBy holds. For that, let U € B. By
hypothesis (take p:=1/2), there exists an element W € 3 such that W C %U. But then,

W+W§%U+%U:U,

where the last equality is a consequence of the convexity assumption made on any U € 3 (because,
in general, one only has U C %U + éU) Therefore, for every U € 5 there exists a W € B such that
W+WCU. [ [ B

From the previous characterization, we get the following criterion, useful to generate locally

convex spaces.

4.5. Proposition. Assumptions: Let X be a (purely algebraic) vector space and S a filter base on
X consisting of sets that are at the same time absorbing, balanced, and convex.

Claim: The family B:=U\crs\S, consisting of the sets obtained by the elements of S via any
homothétic transformation of strictly positive ratio, is still a filter base and, in fact, a fundamental
system of neighborhoods of the origin for a locally convex topology on X compatible with the vector
space structure of X.

4.6. Definition. The couple (X, V) with V(0):=w(B) the vector topology generated by the fun-
damental system of neighborhoods of the origin B := U/\eﬂ?:)\s as in Proposition 4.5, is called the
locally convex space generated by the filter base S.

ProoOF. First, observe that the family B consists of rescaled versions of absorbing, balanced, and
convex sets. But these properties are invariant under positive scaling and, therefore, like S, also B
consists of absorbing, balanced, and convex sets. Moreover, as pointed out in Remark 4.4, B satisfies
condition (4.1). Therefore, according to Proposition 4.3, it is sufficient to show that B3 is still a filter
base on X. For that, let \1.57 and \2Ss be two elements of B with S7, 52 € S and A, \a > 0. We
set A:= A1 A A2 and consider S € S such that S C 51N S (such an element S € S exists because, by
assumption, S is a filter base). But then, we have A\S € B and \S C A\151 N X252 (because S, S1, So
are balanced sets). EEEE

4.7. Remark. Note that the family B;:=U,cn+(1/7)S is also a filter base of neighborhoods of the
origin for the same topology generated by B :=U),cr: AS; this is a consequence of Corollary 1.77.
In particular, if S consists of countably many elements, so does B; and, therefore, in this case, the
locally convex space generated by S is first countable. For example, if X =R? and S = {D,} then
the locally convex space generated by S is the standard Euclidean topology.

However, note that if S consists of an uncountable number of elements, then, in general, the locally
convex space generated by S is not first countable (it depends on the possibility to find a countable
filter base equivalent to the uncountable filter base S). For example, if X =R? and S = U, ¢ [Ri{)\ID.}
then S is uncountable. But still, the countable family S;:=U,cn-{(1/n)D4} is filter base on R
equivalent to § which, again, generates the standard Euclidean topology.
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Preview. Let X be a (pure algebraic) vector space. The procedure to construct locally convex spaces goes as follows:
1. Construct a filter base S on X consisting of sets that are at the same time absorbing, balanced, and convex.

2. Then, construct B:=U\cgr:AS. The family B is still a filter base on X and satisfies the characterization
property stated in Proposition 4.3:

YU€eB,VpeRY, IWeB::WCpU.

The previous property assures that the filter base B is a fundamental system of neighborhoods of the origin
for a locally convex topology on X.

Step 2 in the previous procedure is easy and mechanical. By contrast, the first step can be demanding, and one
would like to find more natural ways to construct a filter base S on X consisting of absorbing, balanced, and
convex sets. This is the next section’s main aim, where we introduce the so-called filtering families of seminorms
and show how they allow for a simple way to construct S. Indeed, Lemma 4.14 below permits to replace the first
step with the following two substeps:

1.1. Construct a filtering family of seminorms (p,)nc.4 on the (purely) algebraic vector space X.

1.2. Set S :={Be(pa)}aca. By Lemma 4.14, S is a filter base on X (consisting of convex, absorbing, and
balanced).

Eventually, Proposition 4.17 below explains how it is always possible to extend a family of seminorms (po)ac.4 SO
that the resulting family (p,)~er is filtering (and (pq)yer 2 (Pa)aca)-

4.1.1. Locally convex spaces defined by a family of seminorms

4.8. Definition. Let X be a vector space and (p,)aec.4 a family of seminorms on X. We say that the
family (po)ac.A is total (or separating or that it separates the points) if for every 0+ x € X, different
from the zero vector, there exists an o € A, depending on z, such that p,(z) # 0. Equivalently, the
family (pn)ac.a separate the points if, whenever p,(x) =0 holds for every « € A, then necessarily
x=0.

4.9. Remark. The motivation to introduce families of seminorms on a vector space X is that if p is
a seminorm on X, then both the open and closed unit semiballs B,(p) and Be(p) can have a shape
that differs from the intuitive idea of a ball. Indeed, both B,(p) and Be(p) contain the set of points
of X where p vanishes, i.e., the kernel of p that we know to be a nontrivial vector space if p is not
a norm. Considering families of seminorms allows fixing this issue. For example, if we consider two
seminorms p and q such that (kerp) N (ker q) = {0}, then the intersection B,(p) N Bs(q) has a more
familiar shape in the sense that Bo(p) N Bo(q) cannot contain lines. Indeed, if Az € Bo(p) N Bo(q)
for every A #0 then p(z) <|\|~! and q(x) <|\| 7! for every A #0. But this implies p(z) = q(z) =0,
ie., x € (kerp)N(kerq)={0}, i.e.,, z=0.

4.10. Remark. Note that, if p is a seminorm on a vector space X # {0} and p(z)# 0, then the
restriction of p to the 1-dimensional subspace X :=span(z) is a norm on X;. Therefore, if (po)ac.
is total, then for every 0z € X, there exists a seminorm p,, (defined on the whole space X), whose
restriction p|X; to the 1-dimensional subspace X :=span(z) is a norm on Xj.

4.11. Definition. Let X be a vector space and (pn)ac.a a family of seminorms on X. We say that
the family (pn)ac . is directed, or filtering, if the ordered set ({p,}ac.4, <) is a directed set. Here,
with < we mean the usual order relation defined by

pa<pp ifand only if po(z)<pg(z) VrelX,

Note that the index set A is not assumed to be directed.
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4.12. Remark. More explicitly, the family (p,)ae4 is directed if, and only if, for every pair of
seminorms p,, and p,, there always exists a seminorm p, upper bounding them, that is, such that
Pa = Pa, and pg = Pa, (equivalently, such that p, =pa, V Pa,)-

Recall the Notation 3.60: If p is a continuous seminorm on the topological vector space X there is no need anymore to
distinguish B, and B,, or B, and (B,)°. But still, one can work with two (or even a family of) continuous seminorms
defined in X, and it becomes essential to distinguish among different unit semiballs. Therefore, we shall also denote
the open unit semiball of p by Bo(p) and the closed unit semiball of p by Be(p).

4.13. Remark. Recall the result stated in Proposition 1.49. If p, = pg then Be(p.) C Be(pg) and vice
versa. In symbols: p, = pgs if, and only if, Be(pn) C Be(pg).

The following result motivates the term filtering given to such families of seminorms.

4.14. Lemma. Let (py)ac.a be a filtering family of seminorms on a (purely) algebraic vector space
X. The family S :={Bes(pa)}aca is a filter base on X (consisting of absorbing, balanced, and
convez sets).

PROOF. First note that () ¢ S as 0 € Be(p,) for every a € A. Next, let Be(pn,) and Be(pa,) be
two closed unit semiballs (associated to the seminorms p,, and p,,). By hypothesis, there exists a
seminorm p,, such that p, = pa, and p, = pa,. But, for any o, € A

Po=ps implies Be(pn) C Be(ps).

Hence, Be(pa) € Be(Pa,) N Be(pa,), and this shows that S is a filter base on X (cf. Proposi-
tion 1.74). EENE

Exercise. Let (po)aca be a family of seminorms. Prove the converse of Proposition 4.14, that
is, if the family S := {Bs(pa)}tac.a is a filter base on X, then (po)aca is a filtering family of
seminorms. Solution. Consider two seminorms p,,, Pa, of the family, and let Be(po,), Be(Pa,) be the
corresponding closed unit semiballs. Since S is a filter base on X, then there exists a closed semiball
B(pa) such that B(pa) € Be(Pa,) N Be(Pa,). By Remark 4.13, it follows that p, = pa, V pa, and we
conclude.

4.15. Proposition. Assumption: Let (py)aca be a filtering family of seminorms on a (purely)
algebraic vector space X. Then:

Claim 7. It is possible to structure X into a locally convex space X:=(X ,11c) by declaring as
a fundamental system of neighborhoods of the origin the set consisting of all possible closed
semiballs (of any strictly positive «radiusy) of the seminorms of the family. In other words,
we define a fundamental system of neighborhoods of the origin of X by setting

B:= {PBo(pa)}(p,a)E[RiXA'

In the framework of Proposition 4.5, this corresponds to the choice S:={Be¢(Pa)}taca.

Claim 2. FEvery seminorm p, is then continuous on X with respect to this topology T1.c
(generated by B) and therefore, for every oo € A we have

(Be(pa))°=Bo(pa) and Be(pa) = Bo(pa).

Claim 2. The locally convex topology T1,c is (Hausdorff) separated if, and only if, the family
(Pa)aca separates the points.

Note that we are not stating that S

is a filter base of neighborhoods of the
origin (and indeed it would make no sense
because, up to now, there is no topology
on X)) but just a filter base in the purely
set theoretical sense.

Continuitiy of the seminorms make no
sense in this purely algebraic context

Now it makes sense to talk about contin-
uous seminorms (continuous with respect
to the 71,c topology just defined)
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4.16. Definition. If the locally convex topology of a topological vector space X is constructed as
described in Proposition 4.15, we say that the locally convex topology of X is defined by the filtering
family of seminorms (p,)qc.4. If this is the case, every seminorm p,, o € A, is necessarily continuous
on X. Moreover, (pn)ac.4 is total if, and only if, the topology of X is Hausdorff separated.

PROOF. i. Let Bo(p,) be the closed unit semiball of the seminorm p,. We set S :={Be¢(Pa)}aca
and B:=Uycr: pS. We show that 5 is a filter base of neighborhoods of Ox for a locally convex
topology on X, which is compatible with the vector space structure of X.

For that, as the semiballs are convex, absorbing and balanced sets, it is sufficient to show,
according to Proposition 4.5, that S is a filter base on X. But this has been shown in Lemma 4.14.

1. From the way the topology is defined, Be(p,) is a neighborhood of the origin. Therefore
(cf. Proposition 3.61) p, is continuous. An alternative proof consists in showing (thanks again
to the equivalences stated in Proposition 3.61) that p, is continuous at the origin Ox € X, i.e.,
that for every £ > 0, there exists p >0 such that p,(pBe(pa)) <& (and by this we mean p,(pz) <
e for any = € Be(pa)). As pa(pBe(pa)) < p, it is sufficient to take p:=e.

1. Let x9# 0. In agreement with Proposition 3.20, it is sufficent to show the existence of a
neighborhood of the origin that does not pass through xg. For that, we observe that, by hypothesis,
there exists ap € A such that p,,(x0) # 0. Thus, the closed semiball

WB'(]JGO) = {:L‘ eXu pao(iﬂ) < po‘oéxo)}

does not contain xy. This shows that the locally convex space (X, 71,c) defined on X by the filtering
family of seminorms (p,)aec.4 is (Hausdorff) separated.

On the other hand, suppose 71,c Hausdorff separated. Let 0+ zo€ X be a generic non-zero
point of X. As 71,c is Hausdorff separated, there exist («v, pg) € A x R such that

70 p0BalPag) = {2 € X  pay(2) < po}.
As kerpo, C poBe(pa,) we necessarily have p, (o) # 0. The arbitrariness of o shows that the family
(Pa)ac.a is total. [ [ B |

The following result explains how any family of seminorms can be extended to a filtering family
of seminorms.

4.17. Proposition. Assumption: Let (p-) er be any family of seminorms on a vector space X. The
family (p~)yer can be filtering or not.

Construction. Denote by A the finite subsets of T, i.e., the subset of p(I') consisting of
elements having finite cardinality. For every [a] € AC p(T') set

p[a} i= sup Py.
v€Ela]
Note that, for every x € X, the sup is extended to a finite subset of real numbers and therefore,
p[a}(m) ‘= maXyelq] pv(x) 5

Claim. The family (p(a))[aje.a is a filtering family of seminorms on X.

Example 4.18. To get acquainted with the square bracket notation [a], with [a] € A and A the set
of all finite subsets of I', let us explicitly write down the formulae of the “construction step” in a
specific case.

Recall that “total” is a synonym of “sep-
arates the points” and of “separating”.
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Consider I':=N, i.e., the case of a sequence of seminorms. Then [a| € A C p(T") can be the set
N,,:={1,...,n} for some n €N, or any other finite subset of natural numbers. The construction step
produces, for example,

PN, = sup p,, thatis py, (z):= supp,(z) VreX.
'YG[Nn YE N,
In other words, the new family is obtained by taking, pointwise, the supremum, which is actually

a maximum because it is extended to a finite set of real numbers.

ProoOF. Indeed, let [a1] and [as] be two elements of A. Set [a] := o] U[as] € A. Then, with

Plan] 1= SUPyeay Py AN Play] = SUDy o]y, WE geb

Pa]:= Sup Pwisup{ Sup P, sup Pw} = sup{Pla,), Plas)}-
v€le] v€len]  vEag]

Hence, in this way, we build a partially ordered set ((p[))[aje.4, <) Which turns out to be a join-

semilattice as Pio,] V Plas] = Pla] = Plai)ufay]- 10 particular, it is a directed set and, therefore, by

definition, a filtering family of seminorms. EETE

4.19. Remark. Observe that for any [a], [3] € A one has p|,) = p|) if, and only if Be(p(o)) C Be(p(s))-
Therefore, as p(,) = p, for every 7 € [a], we have that

Be(p[a)) €MNyela] Be(py) for any [a] € A.

Moreover, as [{7}] € A for any v €T" and p, = pjq,}), we have that (pja))jajca is an extension of
the family (p,) er. In other words, {p-}yer € {po}ajca- But this means that the family B =
{PBe(P1a)) }(p,ja]) R x4 1 a filter base for a locally convex topology on X that includes the family
{pB.(p,y)}(p,,y)e[RiXp which, in general, needs not to be a filter base on X. Note that, what we just
said, is consistent with Proposition 4.15, as the family (p.)~cr, not assumed to be filtering, does
not fall under the assumptions of Proposition 4.15.

4.1.2. Characterization of locally convex spaces

This section aims to show that every locally convex space can be defined by a filtering family of Recall the definition of barrelled set
. . . . . . (given in Definition 3.62): In a topo-
(continuous) seminorms. More precisely, the following characterization holds. logical vector space, we call barrel (or

barrelled set, or tonneau) every set which
is absorbing, balanced, convex and closed.

4.21. Theorem. Assumption. Let (X, V) be a locally convex space.

Claim 2. There exists a fundamental system of neighborhoods of the origin consisting of bar-
relled sets.

Claim 2¢. Consider any fundamental system of neighborhoods of the origin consisting of bar-
relled sets. At least one such system exists due to Claim 2. Call it 7. Then, the family of gauges

(pr)TeT

forms a filtering family of (continuous) seminorms, which defines the locally convex topology

of X.
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4.22. Remark. Formally, cf. Proposition 4.15, Claim . states that if we set S:={Be(p7)}7e7 then
B=U,~0pS =U(, 1)er; x7{pBe(pr)} is a fundamental system of neighborhoods of the origin for
(X,V). But in this case, already S is a fundamental system of neighborhoods of the origin. Therefore,
in this specific case, the construction returns a fundamental system of neighborhoods of the origin
BB which, in general, is bigger than S.

PRrOOF. i. Let U € V(0) be a neighborhood of the origin 0 € X. Since every topological vector space
is regular (cf. Proposition 3.23), there exists a closed neighborhood of the origin V' € V(0) such
that V' C U. Since X is locally convex, V' contains a convex neighborhood of the origin W € V(0).
But W contains a balanced neighborhood E € V(0). Summarizing, given U € V(0), there exist
neighborhoods V', W, E'€ V(0) such that

U DV (closed) DOW (lconvex ) 2 E ( balanced ). (4.2)

Next, we consider the convex envelope K (F) of the balanced set E. We know (cf. Corollary 1.34)
that K (E) is still balanced (and convex). Clearly, by (4.2), we get that K(FE)CW CV CU. Since
the closure of a convex and balanced set is still convex and balanced (cf. Proposition 3.10) K (E) is a

barrelled set (as usual, the fact that K (E) is absorbing comes from the fact that every neighborhood
is absorbing, and every superset of an absorbing set is still absorbing). The proof of the first claim
is completed.

1. According to Proposition 3.65, for any 7' € I3 the gauge pr is a continuous seminorm whose closed
unit semiball coincides with 7" Be(p7) =T. Therefore, the set of all these closed unit semiballs
S:={B(p7) } 7B is afilter base of barrelled neighborhoods of the origin 0 € X. All the more reason,
the set B:=U\cr:AS consisting of all closed semiballs (of any positive radius) is a filter base of
barrelled neighborhoods of the origin of the locally convex space X.

Eventually, it is straightforward to check that {p7}rep is a filtering family of (continuous)
seminorms because the intersection of a finite number of barrelled sets is still a barrelled set (cf.
Proposition 1.26). EENE

The previous result has the following remarkable consequence.

4.23. Corollary. Let X be a locally convex space. The set of all closed unit semiballs generated
by the system of all possible continuous seminorms, i.e., the family

{Be(T) }recgy with Fx={m:X—Ry: 7 is a continuous seminorm on X},

is a fundamental system of neighborhoods of the origin for X.

ProoOF. Indeed {B4(7)}reg, is nothing but the system 7 consisting of all barrelled neighborhoods
of the origin (which we just showed to be a fundamental system of neighborhoods in a locally
convex space). To see this, we observe that Be(7), being the closed unit semiball of a continuous
seminorm is a barrelled neighborhood of the origin. Therefore {Be(7)}rczy € 7. On the other
hand, if 7€ T then (cf. Proposition 3.67) the gauge pr is a continuous seminorm whose closed unit
semiball coincides with 7': Be(pr) =T. Hence, T C {Bo(7) }re g EENE

4.24. Remark. Note that the family §oc is a filtering family of seminorms. More precisely, the family
{Be(7) }rc3y forms a join-semilattice. Indeed, in Example 1.39, we have shown that the join of two
seminorms is still a seminorm. But then, the assertion follows from the fact that the join of two
continuous real-valued functions is still a continuous function.
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4.25. Remark. Note that a vector space X endowed with the indiscrete topology {0, X } is a locally
convex space. The unique continuous seminorm on such a trivial space is the trivial seminorm, i.e.,
the seminorm identically equal to zero. This because p =0 is the only constant seminorm (in fact,
in general, if f: X —Y is a map between the topological spaces X and Y, where X is endowed
with the indiscrete topology, and Y is Hausdorff separated, then f is continuous if, and only if,
f is constant). Apart from this trivial case in which the set Fx reduces to just one element (the
null seminorm), in general, the family §o¢ is uncountable. Indeed, in general, o is a positive cone,
because if p,q € Fx then also p+ Aq € §¢ whenever A > 0.
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Bases of continuous seminorms

Recall the notation for the set of all possible continuous seminorms on X:

Sx ={m X—R, = 7 is a continuous seminorm on X}.

We have the following useful characterization.

4.26. Definition. Let B C Fx be a family (filtering or not) of continuous seminorms all defined
on the same locally conver topological vector space X. We say that B+ is a basis of continuous
seminorms (or a fundamental system of continuous seminorms) on X if the set consisting of all
closed semiballs (of any strictly positive «radius»)

{PB-(p)}(p,p)e[Rix%x (4.3)

is a fundamental system of neighborhoods of the origin in X. If B« is a basis of continuous semi-
norms, to emphasize, we sometimes refer to its elements as basic seminorms.

4.27. Remark. Note that, we do not ask that {Be(p) } pe 3y is a fundamental system of neighborhoods
of the origin, but only that {p Be(p)} () p)er? x By in (4.3) is a fundamental system of neighborhoods
of the origin.

By the very definition, a filtering family of seminorms P that defines a locally convex space
X, consists (a posteriori) of continuous seminorms. A posteriori, P is also a basis of continuous
seminorms (cf. Proposition 4.15, Claim ¢). Reciprocally, Theorem 4.21 and Corollary 4.23, can
be equivalently stated under the form that every locally convex space admits a basis of continuous
seminorms (in fact, even a filtering family of seminorms).

4.28. Proposition. Let X be a locally convex space and B C§x a family of continuous seminorms
on X. The following assertions are equivalent:

t. The family P is a basis of continuous seminorms.

it. For every continuous seminorm w € §x, there exists a basic seminorm p €V and a constant
cx >0 such that (both p and ¢, can depend on )

m(r)<cexp(z) VrelX.

Statement ii. justifies the name «basis of continuous seminorms» as such a subfamily of T plays
the role of a generator for all possible continuous seminorms on X (cf. Corollary 4.23).

4.29. Remark. In other words, condition %:. tells us that ¥ is a basis of continuous seminorms if,
and only if, every element of the set §x of all continuous seminorms on X can be upper bounded
by some element of B (up to a constant positive factor).

4.30. Remark. Note that if T3 consists of a single seminorm p, then ¥ is a basis of continuous
seminorms if, and only if, for every 7 € §o¢ there exists ¢, > 0 such that 7© < cp. A locally convex
space is called seminormable if it admits a basis of continuous seminorms consisting of just one
seminorm. If that unique seminorm is a norm, we say that the locally convex space is normable
(cf. Section 4.3.3).
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ProoOF. We observe that assertion #i. is equivalent to the following one:

111. Given any continuous seminorm m on X, there exists a seminorm p € P and a positive
constant c; >0 such that

¢y 'Ba(p) C Bo().

The easiest way to show the equivalence is to note that if p is a seminorm on X, then for any ¢, >0
also ¢qp is a seminorm on X and we already know (cf. Remark 4.13) that 7 < ¢.p if, and only if,
Ba(cxp) C Bo(). To conclude, one observes that Be(crp) = ¢, Bo(p).

It is, therefore, sufficient to show that . and ¢i. are equivalent.

[2.=4i7.] Indeed, Be(7) is a neighborhood of the origin because 7 is a continuous seminorm (cf.
Proposition 3.61). Since {pBe(p)}(,,p)er? xp is a filter basis of neighborhoods of the origin, Be(7)

must necessarily contain some pB,(p) for some p > 0. Therefore, it is sufficient to set ¢, := p~ L.

[242.=1.] We have already proved that the family 53 consisting of all closed unit semiballs, generated
by all possible continuous seminorms, is a filter base of neighborhoods of the origin (cf. Corol-
lary 4.23). Now, by assumption, every B,(7) € BB contains at least a ¢, ' Bq(p) for some ¢, >0. But
this means that the family { pBe(p) } () p)er® x5 is a filter base of neighborhoods of the origin. EE=E

The following result points out that if we already have a basis of continuous seminorms at our
disposal (say a family B strictly contained in ) then one can check if another family 3 C Fx is
a basis of continuous seminorms, just by comparing the seminorm in ¢ with the seminorms in 5.

4.31. Corollary. Let X be a locally convex space, B a basis of continuous seminorms on X and
BCF a family of continuous seminorms on X. The following assertions are equivalent:

t. The family P is a basis of continuous seminorms.

1. For every basic continuous seminorm q € B on X, there exists a continuous seminorm
p P and a constant cq>0 such that

q(z) <cgp(z) VrxelX. (4.4)

The key point here is that we are not more asking (as in Proposition 4.28) that (4.4) holds
for every continuous seminorm m € §, but just for any q € B with B CF a basis of continuous
SeMInoTrms.

4.33. Remark. Let us stress the difference with what we stated in Proposition 4.28. Here we already
have a basis B of continuous seminorms on X (and ‘B can have any cardinality), and we want to
check if another family of continuous seminorms 3 C § (for example, a countable one) is a basis
of continuous seminorms on X as well. This result is useful because the family § of all possible
continuous seminorms on X (introduced in Corollary 4.23) is an uncountable set, and one does not
want to check whether *J3 is a basis of continuous seminorms by testing if its elements dominate
all possible continuous seminorms (see Proposition 6.3 for an implementation of such a useful
simplification).

PROOF. [i.=ii.] By assumption, both B and ‘B are bases of continuous seminorms. But then,
according to Proposition 4.28, for every (basic) continuous seminorm ¢ € 983, there exists a seminorm



82 LocaLLy CONVEX (TOPOLOGICAL VECTOR) SPACES

p €°P and a constant cq> 0 such that

q(z) < cqp(@). (4.5)
for every x € X. This proves the implication.

[#2.=4.] The common assumption of the statement is that 9B is a basis of continuous seminorms.
Hence, given a continuous seminorm 7 on X, there exists a seminorm q € B3 and a constant ¢, >0
such that

m(x) <czq(z) VreX.

On the other hand, assumption #i. ensures that, since q € B, there exists a seminorm p €5 and a
constant c¢q> 0 such that

q(z) <cgp(z) VzelX.

Hence, 7(x) < crcqp(x) for every x € X. The arbitrariness of 7 € § concludes the proof. EENE

4.2.1. Characterizing convergence in locally convex spaces

The next result characterizes convergence of generalized sequences in locally convex spaces. Roughly
speaking, bases of continuous seminorms suffice.

4.34. Proposition. Assumptions: Let B C§ be a basis of continuous seminorms for a locally
convex space X (Hausdorff separated or not) and let (x))ren be a generalized sequence in X.
Claim: The following two assertions are equivalent:

2. limp ) D x;
. limy p(x —x)) =0 for every p € B.

Note that in claim ii. we are allowed to use the «equality signy as the family p(x — x)) takes
values in the Hausdorff space R.

PRrRoOF. We can confine ourselves to the case x =0. We denote by B the filter base of neighborhoods
of the origin defined in (4.3). Then, limy z) > 0 if, and only if,
VYV eB, d\g€ A :x) €V whenever A = )\,
and this is equivalent to
Ve >0, VpeB, I\ € A x) €cBo(p) whenever A = \.

To conclude the proof, we simply note that x) € cB,e(p) if, and only if, p(x)) <e. EENE

4.35. Remark. Let us suppose that the locally convex topology on X is defined by making filtering a
family of (continuous) seminorms () er. In other words, suppose that X is defined by the filtering
family (p(a))[a]e.a constructed in Proposition 4.17 where A is the set of all finite subsets of I'. Being
p[a] ‘= 1MaXye(q] {pﬁ,}, we get that

li/{nx)\ax lilrxnpv(xfx)\):() Vyel

0 0

li/r\np[a}(x—m)\):o Viaje A < lij{np,y(x—x,\):o Vv €lal € A.
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Overall, we have that limy x) > 2 if, and only if, limp p- (2 — z)) =0 for every v €I'. However, note
that if (p-)~er is not filtering, then it is not a basis of continuous seminorms. Therefore, the converse
of Proposition 4.34 does not hold (i.e., it is not true that if . and . hold, then (p,),er is a basis
of continuous seminorms).

4.2.2. Characterization of linear and continuous maps among locally convex spaces.

4.36. Lemma. Let X and Y be two locally convex spaces and T a linear map from X into Y. The

following two assertions are equivalent:
1. T:X —Y is continuous;

i1. For every continuous seminorm q on Y, there exists a continuous seminorm p. on X such
that

|Tx|q<|z]p, VreX. (4.6)

Recall that here |Tx|q stands for q(Tx) and |z

p. stands for p.(z).

PROOF. 4i. = 4. It is sufficient to show that 7" is continuous at 0 € X, i.e., that (Tx))rea — 0 for
every generalized sequence (z))xea in X converging to 0 € X. For that, due to Proposition 4.34, it
is sufficient to show that [Tz)|q— 0 in R for every continuous seminorm q € §y, given that |z)[,— 0
in R for every continuous seminorm p € §x. But now, given a generic q € §y, since |z)|,— 0 in R
for every p € §, we have, in particular, | |,, — 0 where p, is the seminorm associated with ¢ in the
assertion 2. Therefore, from (4.6), also |Tz|q— 0.

2. = 11. Recall Corollary 4.23: The set of closed unit balls generated by the system of all possible
continuous seminorms, i.e., the family {Be(7)}rcg, with Fx={m: X—R, :: 7 is a continuous semi-
norm} is a fundamental system of barrelled neighborhoods of the origin for X. Let Bo(q) be the
closed unit semiball of the continuous seminorm q on Y. The contintity of 7" shows that there exists
a closed unit ball Be(p) associated with a continuous seminorm p on X such that

T(Be(p)) < Be(a)-

In other words, |z|, <1 implies |Tz|q< 1. In particular, it follows that |z|, =1 implies [Tz |q< 1.
Hence, supj,|,—1|7r[q< 1. Note that, for every p> 0, the expression

Tz |q
sup
|z|p=p \x\p
. T Tz
does not depend on p, because if x = pz then H;’i'q = |‘:“q. Therefore, for every p >0 we have
“lp “1p
Tz |q Tz |q
sup —— sup sup ——
w20 |T[p p>0ly=p 1% p
= swp |Tele<1,
|lz]p=1

so that |Tz|q< |z|p if [2]p# 0. It remains to consider the case |z|,=0, i.e., that if |z, =0 then
|Tz|q=0. We argue as follows. Let x € X be such that |z|,=0. If kerp = {0} then =0 and,
therefore, by linearity, |17z |q=|10|q=[0[q=0. Instead, if kerp # {0} and z is a nonzero element of
kerp, then Az € kerp for every A > 0; in particular, |Az|, <1 for every A >0. But then |T'(A\z)[q< 1
for every A >0, i.e.,

1
A

|Tr|q < VA > 0.

But it is not so easy like if p were a
norm, because here the fact that |z|, =
0 does not impliy that z =0. Otherwise
one simply get Tz =0 by linearity, and
therefore |Tx|q=0.
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Taking the limit for A — 400, we get |Tx|q=0. EEEE

4.37. Proposition. Let X and Y be two locally convex spaces and T' a linear map from X into
Y. Assume that B is a basis of continuous seminorms on X and 2 is a basis of continuous
seminorms on Y. Then the following two assertions are equivalent:

1. T:X—Y is continuous;

1. For every continuous seminorm q & £, there exists a continuous seminorm p €°P and a
constant cq>0 such that

|Tx|q<cqlz|p VzeX. (4.7)

Note that, both cq and p may depend on q but not on x.

4.38. Remark. If X, Y are normed spaces, then B :={||-||x} and 9Q:={]|-||y} are bases of continuous
seminorms and, therefore, T" is continuous if, and only if, there exists a constant ¢ >0 such that

ITz|y <cllz]x

for every x € X. This is the classical characterization, in normed vector spaces, of linear and con-
tinuous operators as bounded operators.

PROOF. [i. = i4i.] Let T' be continuous on X. Due to Lemma 4.36, for every q € 9 there exists a
continuous seminorm p; on X (p; needs not to be in °P) such that |7z |q< |x|y,. Since P is a basis
of continuous seminorms, there exists a p €P and a ¢ > 0 such that |z|,, <c|z|p. Overall,

Tx|q < [2]p < clzp.
Note that ¢ depends on p; and, therefore, on q.

[22. = i.] We argue like in Lemma 4.36. Let (z)),ca be a generalized sequence in X converging to
0 € X. The generalized sequence (|x)|p) e converges to 0 € R, and so does (because of (4.7)) the
generalized sequence (|7 |q)rc A regardless of the continuous seminorm ¢ € Q we consider. Recalling
Proposition 4.34, we conclude. EENE

4.39. Corollary. Let X be a locally convex space. Assume that f: X — K is a linear functional on
X and B a basis of continuous seminorms on X. Then a necessary and sufficient condition for
the linear functional f to be continuous is that there exist p €°P and ¢ >0 such that

|f(z)|<clzly, VzelX.

PRrRoOOF. It is a particular case of Proposition 4.37 because K is a locally convex space defined by
the basis of continuous seminorms 9 = {|-|} having just one element. EENE

4.2.3. Characterization of bounded subsets in locally convex spaces

4.40. Proposition. Assumptions: Let X be a locally convex space and 3 a basis of continuous
seminorms on X. Claim: A subset A of X is bounded if, and only if, every basic continuous
seminorm p €F is bounded on A. The expression «p is bounded on As means nothing but

sup p(x) < +o0.
z€EA
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4.41. Remark. More explicitly, A is bounded if for every p €[ there exists a positive constant a, >0
such that p(z) < oy for every x € A. In other words, we do not require any uniformity with respect
to p€P. In fact, in general, even if A is bounded, one has supyeqpsupzcap(x) =+oo. This can be
easily undrstood in the normed space (R?, | - |2) where the family p)(-) := A| - |2 with A >0 is a basis
of continuous seminorms on (R? | - |2). Now, if B is the unit ball associated with | - |2, then

sup pa(z) =X YA >0.

zeB

Therefore even if B is bounded, we have supy-osup.ep pa(z) = +o0.

PROOF. Let A be a bounded subset of X and p a continuous seminorm on X. The unit semiball
B,(p) is a neighborhood of the origin; therefore, the set A is absorbed by Be(p). In particular, this
means that A C aB,e(p) for some o> 0. Hence

supp(z) < sup p(z)= sup play)<a.
€A rEaBe(p) yEBe(p)

Alternatively, the first part of the proposition can be proved via Proposition 3.48 as soon as we note that p is, by
definition, circled homogeneous as a function from the topological vector space X into the topological vector space R.

On the other hand, let us suppose that every continuous seminorm p €33 is bounded on A. For
any p €°P there exists ap € Ry such that

sup p(z) < ayp. (4.8)
T€EA

To show that A is bounded, it is sufficient to show (cf. Proposition 3.42) that A is absorbed by a
fundamental system of neighborhoods of the origin, e.g., by any set of the type pBe(p) with p >0
and p € P. For that, observe that (4.8) implies for every p € P and every p >0, A C apBe(p) =

(%)pB,(p). Therefore, A is absorbed by pBe(p). e

4.2.4. Characterizing continuous bilinear forms in locally convex spaces

4.42. Proposition. Assumptions: Let X, Y and Z three locally convex spaces, P (resp. Py, resp.
P2) a basis of continuous seminorms on X (resp. Y, resp. Z). Let g be a bilinear map defined
in XxY and taking values in Z. Claim: The following two assertions are equivalent:

i. The bilinear map g is continuous on XxY.

11. For every seminorm pg, €*Pg there exist a seminorm px € P, a seminorm py € Py, and
a constant cy € R™ such that

lg(z, y)’!ﬂz Scy ‘x’!ﬂx ’y’!ﬂ‘d'

PROOF. Statement #i. shows that ¢ is continuous at (0,0) and, therefore, continuous everywhere
due to Lemma 3.29. To show that 2z. implies 2., one can argue as in the proof of Lemma 4.36. ER=E

Recall that A absorbe B if there exists a
Xo(B) >0 (A\o(B) # o) such that N\AD B
for every |A| > Xo(B). In other words, A
absorbe B if there exists an \o(B) >0
such that for every b € B one has b e \A
for every |\| > \o(B).
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Fréchet spaces

4.3.1. Definition of Fréchet space

4.43. Definition. We say that a locally convex (topological vector) space (X, V) is a Frechét space
if it has all the following properties:

2. The topology V is Hausdorff separated.

#t. The topology V is first countable, i.e., it admits a countable basis of neighborhoods of the

origin.
t43. The space (X, V) is (Cauchy) complete.

Note that while properties ¢. and 2. just depend on the topology of X, property #ii. does not make
sense in general topological spaces. Indeed, the notion of completeness relies on the notion of Cauchy
(generalized) sequence which, the way we defined, depends on the algebraic vector space structure.

Reminder [on the notion of complete space|. Let X be a topological vector space and V(0) the filter of neigh-
borhoods of the origin. Let A be a subset of X and (z))xeca & generalized sequence taking values in A. We say that
the generalized sequence (x))yea is a Cauchy generalized sequence (or a Cauchy net) in A, if for every neighborhood
U €V(0) there exists a A\g € A such that

Ty, —Tx, €U whenever Aj=)\pand Ao = Ao

We say that the set A CX is complete (resp. sequentially complete) if every Cauchy net (resp. every ordinary Cauchy
sequence) on A converges towards an element a € A.

4.44. Remark. According to Proposition 3.38, condition #ii. can be replaced by the requirement
«The space (X,V) is sequentially (Cauchy) complete».

4.3.2. An equivalent definition of Fréchet space

It is possible to reformulate the definition of Fréchet space by replacing the conditions «locally
conver» and «first countable» with the single requirement that «X admits a countable basis of
continuous seminorms». More precisely, the following result holds.

4.45. Proposition. Assumption: Let (X,)) be a topological vector space (not necessarily Hausdorff
separated or complete). Claim: The space X admits a countable basis of continuous seminorms
if, and only if, it is locally convex and first countable.

4.46. Remark. We formulated Definition 4.26 in the context of locally convex spaces. Therefore,
officially, one has to clarify what it means for a family of continuous seminorms defined on a (not
necessarily a locally convex) topological vector space to be a basis of continuous seminorms. But
this is what one can imagine: A topological vector space X admits a countable basis of continuous
seminorms {p, }nen, if the family { pBe(p,) } o> 0,nen is a fundamental system of neighborhoods of the
origin of X. Although the notion of basis of continuous seminorms makes sense in any topological
vector space, Proposition 4.45 highlights that it is a natural notion in the realm of locally convex
spaces.

The definition of Cauchy (generalized)
sequence can be given in the more gen-
eral contex of uniform spaces, but here
we do not dwell on this.
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Proor. Let X be locally convex and first countable space. Since X satisfies the first axiom of
countability, it admits a countable basis (U,,),en of neighborhoods of the origin. Since X is locally
convex, every U, contains a barrelled set. Therefore, we can assume that (U,),en is a countable
basis of barrelled neighborhoods of the origin. Let p,, be the gauge of U,. Clearly, (p,)nen is a
countable basis of continuous seminorms on X.

For the other direction, we simply note that if X is defined by a countable basis of continuous
seminorms (P, )nen, then the family

1 .
{mB.(pn) zmeN ne [N}
is a countable basis of convex neighborhoods of the origin of X (cf. Remark 4.7). EENE

4.3.3. Finite-dimensional spaces

4.47. Definition. A locally convex space X is called normable if there exists a norm ||-|| on X such
that {||-||} is a basis of continuous seminorms on X. Every complete normed space is called a Banach
space. Every Banach space is a Fréchet space.

We are going to characterize finite-dimensional and (Hausdorff) separated locally convex spaces.

4.48. Lemma. Let X be a (purely algebraic) vector space of dimension n € N. Let (e1,...,e,) be a
basis of X. For every x € X such that x=&1e1+ -+ + Enen with &:=(&)ien, € K", we set

2]l := 1€ =&l + -+ |&nl.

Then, (X,||-|l1) s a normed space which is topologically (linearly) isomorphic to the normed space
(K™, |-|1). In other words, every (purely algebraic) and finite-dimensional vector space can be
structured into a normed space. Moreover, once endowed X with this norm, it turns out that:

i. Every seminorm p on X is continuous on the normed space (X, ||-||1).
5. Every norm q on X is equivalent to the norm ||-||;.
The claim 1. is usually expressed by the motto «all norms on a finite-dimensional space are
equivalent ».
4.49. Remark. Two norms ||-||; and ||-||2 on a locally convex space, are said to be equivalent, if they

both are bases of continuous seminorms, i.e., if there exist constant ¢y, co > 0 such that

el <[l llz < ezll-[l1-

In other words, the two norms are equivalent if they generate the same (locally convex) topology.

Proor. That every (purely algebraic) and finite-dimensional vector space can be structured into a
normed space has been implicitly proved in the statement of the lemma. Let us prove claim 2. Let
r==¢&e1+ -+ &pen. We have

p(x) < 3 [&ilb(er) < (maxp(er) ) [l

1€N,

Pay attention to the difference bewteen

the statements «every (purely algebraic)
and finite dimensional vector space can
be structured into a normed space», and
«every finite dimensional locally convex
space is normable».

In other words, the construction makes
any seminorm continuous on X.



88 LocaLLy CONVEX (TOPOLOGICAL VECTOR) SPACES

Thus, the seminorm p is continuous at the origin and therefore everywhere.

1. Let q be a norm on X. Due to claim 4., the norm ¢ is continuous on the normed space (X, ||-||1).
Also, since both g and ||-||; are norms on X, they vanish only at  =0. Hence the «ratio» function
r:x—q(z) /||« is well-defined and continuous on X \{0}. The equivalence of q and |-||; amounts
to prove that 7 is bounded in X \{0} and lower bounded by a strictly positive constant. For that,
observe that r is well-defined and continuous on the normed unit sphere S} ' = {z € X = ||z|[; =1}.
But S ! is a compact set, because (X, ||-||1) is topologically isomorphic to (K™, |-|). Therefore,
is bounded on S? ! and by homogeneity

() <( maxlqw))uxul. (19)

ceST

on X \ {0}. Similarly, again by homogeneity,
() >< min 1q<a>>x1. (4.10)

oeST
This concludes the proof. EENE
4.50. Remark. Since X:=(X,||-||1) is a normed space, ||-||1 is a basis of continuous seminorms on

X. According to Proposition 4.28, for every continuous seminorm 7 on X, there exists a constant
¢ >0 such that 7(z) <cr||z|; for every 2 € X. In particular, since q is continuous on X, we have

q(z) < el |1

for evey x € X. Therefore, the proof of Lemma 4.48 is needed to derive the strictly positive lower
bound on 7:x +— q(x)/||z||;. However, the constants derived in the expressions (4.9) and (4.10)
during the proof of Lemma 4.48 are sharp.

So far, we have proved that every finite-dimensional (and purely) algebraic vector space can be
structured into a normed vector space. We achieved this by transferring the topological structure
of the normed space (K", ||1) to the vector space X, via the classical (and non-natural) linear
isomorphism which, by the way, depends on the choice of a basis of X. Also, we have shown that
any other norm on X would have generated the same topology on X. However, so far, we have not
proved that every finite-dimensional and locally convex space is normable. This is the topic of the
next result.

4.51. Theorem. Every locally convex and Hausdorff separated space X, having finite dimension
n € N, is normable and, therefore, topologically isomorphic to K".

4.52. Remark. Note that the notion of «normable space» makes sense only in locally convex spaces,
as every normed space is locally convex.

Proor. It is sufficient to show that there is a norm q on X which is continuous — the result follows
from Proposition 4.28 and the previous Lemma 4.48.

(e]

We argue by induction. Denote by (e, ..., e,) a basis of X. Also, denote by X}, the k-dimensional
subspace spanned by (e, ...,ex) (1 <k <n), and by B, the one-dimensional subspace spanned by

(ex)-

Is K™ normable? Well, the answer does

not make sense until one specifies which
topology we are considering on it. Does
the vector space K" admits a norm. Yes,
for example ||-||1.
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(k=1) Since X is Hausdorff separated, there exists a continuous seminorm p; on the whole of X
whose restriction to X is a norm on X; (cf. Remark 4.10). Let & be the vector subspace of X5 on
which p; is zero, that is, the kernel of the restriction of p; to Xs. Clearly, dim K;<1 because p; is
a norm on X;. Since the topology of X is Hausdorff separated, there exists a continuous seminorm
m defined on the whole X such that its restriction to Xy is a norm.

71'1’5(:1
norm on
P10y K 1:=ker (p1]/X2)
norm on N
X, d« X, d - g X=X

As Xy = X1DBo, setting po:=m1 V p1, we obtain a continuous seminorm on the whole of X, whose

restriction to Xy is a norm. Indeed, for any x =1 by € Xy

pg(ml@bg)zo = Wl(ml@bz)zo and pl(ml@bg)zo
= Wl(l‘l@bg):() and x1 Dby XK.

Since 71 is a norm on K we conclude that x1 ® by =0. Hence, po:=m1 Vp; is a norm on Xo,.

€2

e
! Xi—p

S Xy:=span(ey, e2)

Figure 4.1. As Xy, = X&B,, setting ps:=m V p1, we obtain a continuous seminorm on the whole of X,

whose restriction to X5 is a norm.

(k general) Assume the existence of a continuous seminorm py, defined on the whole X and whose
restriction to X} is a norm on X, and let us show that there exists a seminorm py 1 on X whose
restriction to Xy is a norm. Let Ky be the vector subspace of X1 on which py is zero, that is,
the kernel of the restriction of pj, to X 1. Clearly, dim K, <1 because p;, is a norm on Xj. Since the
topology of X is Hausdorff separated, there exists a continuous seminorm 75 on X whose restriction

to K, is a norm.

7 | Kk
norm on
Pkl X K:=ker (pr|Xp1)
norm on N
X, €49 X, o X1 d - 4 X=X

Indeed, as dim K, <1, there exists uy € X such that I ={Auy }rcx. If up=0, then the null functional answers to the
question. Otherwise, since X is Hausdorff separated, there exists a continuous seminorm 7, on X such that my(ug) #0,

and by homogeneity m(Au) =0 if, and only if A=0.
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We set pi41:=7 Vpg. Then pii; is a continuous seminorm on X whose restriction to X1
is a norm on Xy, . Indeed, as Xy 1 = Xp&By 1, setting pj+1:=7; V Pk, we obtain a seminorm on
the whole of X whose restriction to X is a norm. Indeed, for any = = ® by41 € Xy

Prr1(xr @bpr1) =0 & mp(zp ©bry1) =0 and  pp(ar Dbrg1) =0
& TR(xp@bry1) =0 and g @ b4 € Ky

But 7 is a norm on K, and therefore x; & by =0. Hence, pii1:=m;V pi is a norm on Xy 1.

Eventually, we set q:=p,, and, in this way, we get that q is a continuous norm on X. HE=E

An alternative definition of Fréchet space

Here we want to give an alternative definition of Fréchet space, based on the concept of metrizability.

4.53. Definition. A topological vector space (X, 7) is metrizable if there exists a metric d: X x X—R
such that 7 coincides with the metric topology defined by the distance d.

We need to recall the following characterization of metrizable topological vector spaces, whose
proof can be found, e.g., in [Theorem 5.10, p. 172, ALIPRANTIS, D., BORDER, K. Infinite Dimen-
sional Analysis: a Hitchhiker’s guide. Springer, Heidelberg, 2006].

4.54. Theorem. (Birkhoff 193641, Kakutani 19364-2) Metrizability theorem: A topological vector
space (X, 7) is metrizable if, and only if, it is Hausdorff separated and satisfies the first axiom of
countability (that is, it admits a countable filter base of neighborhoods of the origin). Moreover, if
X is metrizable, the metric d: X xX—R., inducing 7, can be chosen to be translation invariant,
that is

dlx+z,y+2)=d(z,y) Vz,yeX.

We can therefore replace Definition 4.43 of Fréchet space with the following equivalent one.

4.55. Definition. We call Fréchet space any locally convex space which is metrizable and complete.
We call pre-Fréchet space any locally convex space which is metrizable.

The notion of pre-Fréchet space is borrowed from the common practice to use the term pre-
Hilbert spaces to refer to spaces that become Hilbert spaces after completion (i.e., inner product
spaces). In other words, a Fréchet space is a complete pre-Fréchet space.

Then, from Proposition 4.45 and Theorem 4.54, we get the following result.

4.56. Theorem. A topological vector space is a pre-Fréchet space if, and only if, it is Hausdorff
separated and admits a countable basis of continuous seminorms.

PRroOF. Indeed, according to Proposition 4.45, a topological vector space (not necessarily Haus-
dorff separated or complete) admits a countable basis of continuous seminorms if, and only if, it is a
first countable locally convex space. But then, the metrizability theorem (Theorem 4.54) completes
the proof. EETE

Metrization theorems. A metrization theorem is a result that gives sufficient conditions, and some-
times necessary and sufficient conditions, for a topological space to be metrizable, i.e., for its
topology to be induced by a metric.
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An optimal metrization theorem, giving a necessary and sufficient condition, is NAGATA-
SMIRNOV metrization theorem:

4.57. Theorem. (Nagata-Smirnov) A topological space is metrizable if , and only if, it is regular,
Hausdorff, and has a countably locally finite base.

A variation of this, directly implied by the fact that metrizable spaces have countably locally
discrete bases, is the BING metrization theorem:

4.58. Theorem. (Bing) A topological space is metrizable if, and only if, it is reqular, Hausdorff,
and has a countably locally discrete topological base.

A historical predecessor and direct implication of these theorems is the URYSOHN metrization
theorem:

4.59. Theorem. (Urysohn) Every second-countable, reqular, Hausdorff space is metrizable.

4.60. Remark. These results assume Hausdorff separation and regularity as essential properties
(valid in any metric space) and differ on a structural condition related to a topological basis or a local
basis. Recalling that every topological vector space is regular and that second-countable spaces are a
subset of first-countable ones, it appears clear that the interesting part in Birkhoff-Kakutani result
is in that it gives a mecessary and sufficient condition under the hypothesis that the topological
vector space is first countable. This, of course, is possible because we are treating topological vector
spaces and not abstract topological spaces.
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INDUCTIVE TOPOLOGIES

5.1 | The induced vector subspace topology

We introduced the concept of subspace topology in Definition 2.13 when we were in the general
topology framework. Here we revisit the notion in the context of locally convex spaces.

Let X be a topological vector space, V(0) the filter of neighborhoods of the origin of X and
MSLX a (purely algebraic) vector subspace of X. We set

Vam(0):={Vm CM = V=V NM for some V €V(0)}. (5.1)

It is easily seen that Vyg(0) satisfies the properties of the structure theorem (cf. Theorem 3.17 and
Proposition 3.25) and, therefore, it is a filter of neighborhoods of 0 € M for a topology compatible
with the vector space structure of M. We say that the topology generated by the filter (5.1), is
induced on M by X.

Notation 5.1. Sometimes we write V | M to denote the topology induced on M by X.

5.2. Remark. By Remark 2.14 on the trace of a filter, we can say that the topology induced by
(X, Vx) on a subspace MQX is the function which sends each m € M to the trace of Vyc(m) on M.

5.3. Proposition. If X is a locally convex space and MX, then M is also a locally convex space
(when endowed with the topology induced on it by X).

Proor. It is a consequence of the fact that the intersection of convex sets is still convex, together
with the following simple observation: if /3(0) is any filter base of neighborhoods of the origin for
X, then the family

Bag(0) :={By CM :: By =BNM for some B e 5(0)},
i.e., the trace of B(0) on M, is a filter base of neighborhoods of the origin for M (endowed with
the topology induced by X).

But now, if B(0) is a filter basis of convex neighborhoods of the origin of X (whose existence

is guaranteed by the local convexity assumption on X) then Byg(0), which is a filter base of
What we really proved is that a locally

neighborhoods of the origin for M, consists of sets of the form B NI with both B and M convex. convex topology induces a locally convex
: subspace topology on any of its convex
Hence, M is a locally convex space. EEEE subsets. However, to talk about locally
. . . . . , convex spaces we must deal with vector
The next two results will play a crucial role in proving the the Dieudonné-Schwartz (The- subspaces rather than convex subsets.
orem 5.19).

93
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5.4. Lemma. Assumptions: Let X be a locally convex (topological vector) space, and M<X a
vector subspace of X. Claim: Given any U € Vi (0), if U is convex, then there exists a convex
neighborhood V. €V (0) such that U =V.NIM.

‘/(: 51;0 ‘/;/
N L

Figure 5.1. (left) Given any U € Vy(0), if U is convex, then there exists a convex set V. € V(0) such that
U=V.NnM. (right) If M is closed, given any U € Vi(0) with U convex, and any xo ¢ M, there exists a
convex set V'€V (0) such that U=V, NM and z, ¢ V..

5.5. Remark. We already know that in any topological vector space X, for every U € Vg (0) there
exists a V{;7) € V(0), not necessarily convex, such that U = V(;;) " M. Lemma 5.4 gives more infor-
mation. If X is a locally convex space and U € Vy(0) is convex, then the neighborhood V(i) € V(0)
can be chosen to be convex.

5.6. Lemma. Assumptions: Let X be a locally convex (topological vector) space, and M<X a
closed subspace of X. Claim: Given any U € Va(0) with U convez, and any xo ¢ IV, there exists
a convez set V. € V(0) such that U=V, "M and zo¢ V. .

5.7. Remark. In any topological vector space X, for every U € Vy(0) there exists a Vi) €V(0), not
necessarily convex, such that U = V()M M. Here, Lemma 5.6 assures that if U is convex and M
is closed in X, then for any o ¢ M the neighborhoods V{;7) € V(0) can be chosen to be convex and
such that zo ¢ V).

Figure 5.2. The geometric construction used in the proof of Lemma 5.4. Since X is locally convex, the set
W contains a convex set W, which still belongs to V(0). Here V.:= K (U UW,) is the convex hull of UUW..

PROOF. (of Lemma 5.4) By definition, U € Vy¢(0) if, and only if, there exists W € 1(0) such that
U:=WNM. Since X is locally convex, the set W contains a convex set W, which still belongs to
V(0). Let us denote by V.:= K (U UW,) the convex hull of U UW,.. We are going to show that

U=wnM)=1.NnM, (5.2)
and this will complete the proof because V. is convex and in V(0) (as V.2 W, with W, € V(0)).

For that, first we observe that since V. is the convex hull of the union of two conver sets, as it
is easy to prove, V. coincides with the union of the family

(AU + pWe)(x pyerz with A+ p=1.

In other words, any x € V. is a convex combination of an element v € U and an element w € 1.

U convex by hypothesis while W, is
convex by construction
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Clearly, one has U C V.N M because, by assumption U C M and, on the other hand, U C
K(UUW,.) =V, To show that V.NM C U(:=W NM), we consider a generic element

r=Au+ pw e V.NM, (5.3)

with (A, u) €R%, A+ =1, u € U, w € W,, and we show that 2 € U.

If n=0, then x =u € U. On the other hand, since =, u are both elements of M, we have that
w € IV as soon as (7 0. Therefore, if 110, we have w e W.NMCU (:=W NM), and this concludes
the proof because x can be written as a convex combination of two elements of the convex set

U. EEEE
Ve
/ - \: (We+ M)V
- M
Wt M \ y
z0+M

Zo

Figure 5.3. The geometric construction used in the proof of Lemma 5.6.

PRrOOF. (of Lemma 5.6) According to Lemma 5.4, given U € Vy¢(0), with U convex, there exists
a convex set V. €V (0) such that U =1.NM.

Now, we observe that the set zog+ M is closed and that 0 ¢ xp+ M because xo ¢ M. Indeed,
recall that for 1, x9 € X there holds x| + M=z + M if, and only if, o — 21 € M; and if zo— 2, ¢ M
then (21 + M) N (22 + M) = (). This implies that the open set (zo+ M)? is a neighborhood of zero
in X; thus, there exists a convex neighborhood W, € V(0) of the origin (in X), that we can always
suppose included in V., such that

(xo+M)NW.=0 (and W.C V).

But the previous relation implies that w ¢ x+ M for every w € W, i.e., w — x¢ ¢ M for every w € V..
Hence, (w+ M) N (xo+ M) =0 for every w € W,, from which we infer that

(W.4+M) N (zo+ M) =10.
We then set
V=W +M)NV;
and we conclude the proof as soon as we show that x¢¢ V., V. is convex, V'€ V(0), and
U=V.nM.

For that, observe that zo ¢ V. because g € (x¢g+ M) and zo+ M is disjoint from W, + M and
therefore also from its subset V.. Also, the set V. is convex because it is the intersection of the
convex set V. with W, + MM which is convex because it is the Minkowski sum of two convex sets.
Moreover, V. € V(0), because it is the intersection of two neighborhoods of the origin (note that
(W.+ M) D W,). Eventually, U =V, N M because of

U=MnV.nM) C W +M)N(V.nM) C ,.nM =U.
=V.NnMmM

This concludes the proof. EENE

Recall that the sum of convex sets is still
a convex set

In general, for subsets A, B C X one has
K(A+4 B)=K(A)+ K(B) where K is the
convex hull operator.
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Combining Lemma 5.4 and Lemma 5.6 we can infer a refined version of Lemma 5.6. Compared
to Lemma 5.6, here the point x( that in Lemma 5.6 is assumed to be outside of M is now assumed
only to be outside of a convex neighborhood in Va¢(0).

5.8. Corollary. Assumptions: Let X be a locally convex (topological vector) space, and M<LX a
closed subspace of X. Claim: Given any U € Vg (0) with U convex, and any xo¢ U, there exists
a convezr set W €V (0) such that U=W NM and xo¢ W.

PROOF. It is an immediate consequence of Lemma 5.4 and Lemma 5.6. Indeed, by Lemma 5.4
there exists a convex neighborhood V' € V(0) such that U=V NIM. Now, if 29 ¢V we set W :=V.
Otherwise, if zg€ V' then necessarily zo ¢ M, and by Lemma 5.6 there exists W € V(0) such that
U=WNM and zo¢ W. EEnE

Strict inductive limit of locally convex spaces
We start by setting up the framework and by describing the goal of this section.

Assumptions: Let X be a (purely algebraic) vector space over K (as usual, K=R or K=C), and
let (X,,)nen be an increasing sequence of vector subspaces of X that covers X:

xnﬂ xn+1 and UnEN xn:X (5.4)
Assume that:
i. Every subspace X,, is endowed with a locally convex topology V,, compatible with the vector

space structure. In other words, we are considering a sequence (X,,, V;,)nen of locally convex
spaces.

1. The topology V,, coincides with the topology induced by V,+1 on X,, (X, +1). In other
words V,, =V, +1|X,,, that is

Vn(0) :={V,CX, = V,=V,11NX, for some V,1€V,,+1(0)}.

Here, we have denoted by V,,(0) :=Vx_(0) the neighborhood topology induced by the locally
convex space (X, 1, V,+1) on X,. Note that, by Lemma 5.4, every convexr neighborhood
U, €V, (0) can be realized as U, = U,,+1 N X, for some conver neighborhood U,, 41 € V,,4+1(0).

Aim: Until now, it has not been defined any topology on X. We aim to endow the vector space X
with a locally convex topology compatible (in a sense to be made precise soon) with the sequence
of locally convex spaces (X, Vp)nen-

To this end, we denote by B,(X) the family of all subsets of X, which are absorbing, balanced,
and convex. Note that the family 5,(X) consists of sets defined in a purely algebraic way.

5.9. Proposition. Assumptions: Let B C B,(X) be the family of those elements B in Bo(X) such
that, for every n €N, BNX, is a neighborhood of the origin in X,. In other words, define

(BeB) if, and only if, (B€B,(X) and YneN[BNX,V,(0)]).

Note that B is nonempty because the whole space X always belongs to B.

Claim: B s a filter base of neighborhoods of the origin of X for a locally convex topology V which
18 compatible with the vector space structure. In other words, B induces a neighborhood topology
V on X that turns (X,V) into a locally convex space.
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We then say that the locally convex space (X)), is the strict inductive limit of the sequence
of locally convex spaces (X, V,)nen. The sequence (X, V,)nen is called a defining sequence for
(X,V). Sometimes, the notation

(X, V) :=lim (X, V) (5.5)

is used to denote this circumstance — the notation is borrowed from category theory, where the
inductive limit is also known as the direct limit. With this definition in mind, we can restate
Proposition 5.9 as follows.

5.10. Proposition. The inductive limit (X,V) :=lim (X,,,V,) of the increasing sequence of locally
convex spaces (X,)nen is a locally convex space.

Note 5.11. Before giving the proof, let us recall the statement of Proposition 4.5, which will be used in the proof.
Assumptions: Let X be a (purely algebraic) vector space and S a filter base on X consisting of sets that are at the
same time absorbing, balanced, and convex. Claim: The family B :=U,cr-AS, consisting of the sets obtained by
the elements of S via any homothétic transformation of strictly positive ratio, is still a filter base and, actually, a
fundamental system of neighborhoods of the origin for a locally convex topology on X compatible with the vector
space structure of X.

PRroor. It is sufficient to show that B is a filter base that is invariant under homotheties of strict
positive ratio, and then to invoke Proposition 4.5.

Invariance by homothety. Let B an absorbing, balanced, and convex set such that BN X, is a
neighborhood of the origin in X,, (for every n € N). For any a >0 the set aB is still absorbing,
balanced, and convex. On the other hand, BN X, =a(BNX,) € Vx,(0), because Vx (0) is
invariant under homothetic transformations of strictly positive ratio.

Filter base. Let B’ and B” be two convex sets belonging to B. The intersection B = B'N B” is still
absorbing, balanced, and convex (cf. Proposition 1.26). Also

BNnX,=(B'NX,)Nn(B"NX,)eVx,(0)
because Vo, (0) is stable under finite intersection. The assertion follows. EENE

5.2.1. A criterion for a convex subset to be a neighborhood of the origin in the strict inductive

limit topology

5.12. Proposition. Let V be a convex subset of (X,V). The following two assertions are equivalent:
i. Vis a neighborhood of the origin (in X), i.e., V € V(0).

1. For every n € N, the trace VNX,, of Von X, is a (convex) neighborhood of the origin in
X,.. In other words, VNX,€V,(0) ¥n € N.

Here, the notation is the same as the main section: (X,V) is the strict inductive limit of the
sequence (X, Vi)nen; V and V,, are, respectively, the neighborhood topologies of X and X,,.

PROOF. [i.=ii.] For this implication, the hypothesis that V' is convex does not play an essential
role. Let V' be a set in V(0). Since X is a locally convex space, the set V' contains a convex, balanced,
and absorbing set B € )(0), and to be a neighborhood of the origin in X means that BN X,€V,(0)
for every n € N. But then, for every n € N, we have that also V' NX,(2BNX,) is a neighborhood
of the origin in X,,.



98 INDUCTIVE TOPOLOGIES

[t2.=4.] Let V' be a convex set in X such that, for every n € N, V,,:=V NX, is a neighborhood
of 0 in X,. The set V}, is convex and contains a balanced set F,, € V,,(0). We set F =U, cnEy.
Clearly, F is a balanced set — it is simple to prove that the union of a family of balanced sets is
still balanced. But then the convex hull K (E), of £ in X, is balanced and it is also in V(0), because
K(FE) is convex, balanced, absorbing and K(E)NX,2F, for every n € N. Obviously, K(E)CV
because £ CV and V is convex (the fact that F CV is a consequence of F,, CV,, Vn € N). Hence
V' is a neighborhood of the origin in X. EECH

5.2.2. Characterization of continuous linear maps taking values in a locally convex space

5.13. Proposition. Let (X,V) be the strict inductive limit of the sequence of locally convex spaces
(:x:na V)HEN .

Assumptions: Assume that f is a linear map from X into Y, with Y a locally convex space. For
every n € N, denote by f, the restriction of f to X,,.

Claim: The linear map f is continuous if, and only if, for every n € N the restriction f, is
continuous from X, to Y.

PRroOOF. Let V be a neighborhood of 0 in Y. We have to show that for every n € N there exists
Upn € Vu(0) such that f,(U,) C V. For that, we observe that if f is continuous, then f~(V) is a
neighborhood of 0 in X and, therefore, it contains a convex neighborhood U of 0 in X. For every
neN, U,:=UNX, is a neighborhood of 0 in X,, (due to Proposition 5.12) and, moreover,

U S VINX, = £ (V) ={z€Xynt falz) €V

Therefore, f,,(U,) CV, and this shows that f,, is continuous at 0, hence everywhere (because f, is
linear). Note that we didn’t make use of the local convexity of Y.

For the other direction, suppose that for every n € N the restriction f,, is continuous (on X,).
Let V € Vy(0). Since Y is locally convex, we can assume that V is convex. Hence, f~1(V/) is convex
because [ is linear (cf. Proposition 1.29). Now, for every n € N we have

FAV)NX, = £, 1(V),

and this is a neighborhood of 0 in X, (by hypothesis). Due to Proposition 5.12, f~1(V) is a
neighborhood of 0 in X. EECHE

In particular, the following result holds.

5.14. Corollary. A linear form on X is continuous if, and only if, its restriction to every X, is
continuous.

5.2.3. The topologies induced by the strict inductive limit on its generating subspaces

5.15. Proposition. The topology V,, of X,, coincides with the topology induced by V on X,,:
Vn=V|X,.
In other terms, for every n e N:

V={Vp,CX,:V,=VNX, for some V €V(0)}.
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Proor. [V,DV|X,|] We have to prove that every neighborhood V;, of the origin in the induced
topology (V|X,,)(0) contains a neighborhood U,, € V,,(0).

By definition of induced topology, one has V,, =V N X, for some V' €1V (0). But V is locally
convex, hence U C V for some convexr U € V(0). According to Proposition 5.12, for every n € N,
Up:=UNX, is in V,(0). Therefore, also V;, € V,,(0) because it includes the neighborhood U,,. This
completes the proof of the inclusion V|X,,CV,.

[V|X,, 2V,] Here we have to use, and for the first time, the property V,, =V,,41|X,, given in the
assumptions at the beginning of Section 20.

U7L+1 xn+1

Un I)Cn

Figure 5.4. Since V, =V, +1|X,, according to Lemma 5.4, there exists a convex neighborhood U, 1 €
Vn+1(0) such that U,,=U,+1NX,

Fix n € N. Let U, be a convex neighborhood in V,(0). We have to show the existence of a
neighborhood U € V(0) such that U NX,,CU,. Note that we are allowed to (and we will) construct
U depending on the fixed n, although we do not explicitly report this into the notation. Due to
Proposition 5.12, it is sufficient to construct a convex set U C X such that

UNX,CU, and VkeN[UNX;eVy0)]. (5.6)

Since V,, = V,,+1|X,,, according to Lemma 5.4, there exists a convex neighborhood U,, 11 € V,,11(0),
such that U,, =U,, ;1N X,,. For the same reason, there exists a convex neighborhood U, 2 € V,,12(0),
such that U, +1=U,,+2NX,, 1. Hence, U, =U,,+2NX,, 1+ 1NX,, = U, 12N X,,. By induction, one shows
the existence, for every k € N, of a convex neighborhood U, 11 € V,,+1(0) such that U, =U,, ;N X,,.
We set

U:=UrenUn+k-

Note that the set U so constructed satisfies (5.6). Indeed, by construction, U,y C U, 4541 for
every k€ N, and this implies that U is convex because it is the union of an increasing sequence of
convex sets. Also, we have UNX,, = Ugen (Up+:NX,) =UkenU, = U, so that we got more than
UNX, CU,in (5.6). Finally, for every k€ N we have U N X;=U;en(Up+jNXy) 2 Uy, N Xy, and
this last set is a neighborhood in Vi (0) because from V,, =V, 1 1|X,, it follows that Vi =V, 41| X}, for
every k€ N. [ [ B

Figure 5.5. Let z be a non zero element of X. Since V,, is Hausdorff separated, there exists a neighborhood
U, of 0 (in X,,) not passing through z.

5.16. Corollary. If the topologies V,, are Hausdorff separated, then V is Hausdorff separated as well.

PRrROOF. Let = be a non zero element of X. As X=U, cnX,, there exists an n € N such that

The inclusion V,, D V|X,, is also a conse-
quence of Proposition 5.13. Indeed, the
identity map = € (X, V) —xz € (X, V) is
linear and continuous, and the inclusion
V, 2 V|X,, is nothing but the continuity
of the immersion z € (X,,, V,,) = z € (X,
V).

Without loss of generality, we can con-
sider just the convex neighborhoods.
Indeed, they suffice to form a fundamental
system of neighborhoods.

Un 11N Xn=Un, Un12NXpt1=Unyt1, ...,
Un k41N X 5=Un ik
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x € X,,. Since V, is Hausdorff separated, there exists a neighborhood U, € V,,(0) not passing through
x. Since X,, is endowed with the topology induced by X, there exists a U € V(0) such that U, =
UNX,. Hence, z ¢ U (because otherwise = € U,, as = € X,,), and this proves that X is Hausdorff
separated. EETE

Strict inductive limit of Fréchet spaces (LF-spaces)

We call LF-space every strict inductive limit of Fréchet spaces. It is possible to show that, in
general, an LF-space is not a Fréchet space. The argument behind this claim is based on the fact
that every Fréchet space is metrizable (Theorem 4.54), and, on the other hand, there are examples
of LF spaces that are not metrizable.

Example 5.17. (A non-metrizable LF space) The most important example (for us) of nonmetrizable LF-space is
D(Q) (if you don’t know yet how convergence in D(Q) is defined, come back to this observation later). To show
that the topology of D(Q) is not metrizable (cf. Remark 6.27), we use a reductio to absurdum argument. We focus
on the case Q =R, but the idea can be easily generalized (cf. Remark 6.27). Let (¢,), be a sequence in D(R) with
pn(z)=1for |z|<n and ¢,(z) =0 for |x| >n+1. Assume d to be a metric on D(R) that induces the same topology
of D(R). Let B, be the ball around 0 with radius 1/n in this metric. As each B,, is a neighborhood of the origin, it
is absorbing. Thus, for each n € N, there exists ¢, > 0 such that ¢, :=c¢, ¢, € B,. But then, ¢,, =0 in D(R) and this
cannot be the case because suppgr, =suppry, and there exists no compact subset of R which includes the support
of every v, (the sequence (¢, )nen has been built to escape from every compact subset of R).

5.3.1. Characterization of continuous linear maps in LF spaces

5.18. Proposition. Assumption: Let X be an LF space, Y a topological vector space, and f: X—Y
a linear map. Claim: If Y is a locally convex space and f is sequentially continuous, then f is
continuous.

(@]

PROOF. The sequential continuity of f on X ensures the sequential continuity of the restriction f,
(on X,,). But each X,,, being a Fréchet space, has a countable filter base of neighborhoods of the
origin and, therefore, sequential continuity on X,, is equivalent to continuity on X,,. Thus, Vn € N,
the restriction fix is continuous (on X,). By Proposition 5.13, it follows that f is continuous.
This completes the proof. EENE

5.3.2. Characterization of bounded subsets in LF spaces [Dieudonné-Schwartz|

5.19. Theorem. (Dieudonné-Schwartz) Assumptions: Let X be the LF-space defined by the family
of Fréchet spaces (X, Tn)nen. Let A be a bounded subset of X. Claim: There exists and v € N
such that A C X, (and therefore A is also included in X,, for every n > v, because of X, <X, 1
VneN).

PRrRoOF. We make use of the completeness assumption on the spaces X,,. We argue by logical
contraposition: we prove that if there is no X,, v € N, containing the set A then A is unbounded.

The argument proceeds as follows. If A is not contained in any of the X,,, there exists a sequence
(Zn)nen in A such that x,, ¢ X,, for every n € N. This allows us to build a neighborhood U € V(0)

Note that if z,, ¢ X,,, then Az, ¢ X,, for
every A # 0.
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in X which does not absorb the set S :={xy}necn. This will complete the proof because if U € V(0)
does not absorb S, then it is not the case that S is absorbed by any neighborhood of the origin,
that is, .S is unbounded. Since A contains the unbounded set S, also A is unbounded.

1

N

U L

Figure 5.6. Step 1. Since x; ¢ X; and X, is closed in X, there exists a convex neighborhood Us of 0 in
X, such that Uy =U;N X, and 1 ¢ Us.

After that, it is sufficient to prove that if the sequence (z,),en in X is such that z,, ¢ X,, for
every n € N, then S :={z,},en is unbounded. First, we note that, by assumption, also %xn ¢ X,
for every n € N. Then we observe what follows. It is possible to construct an increasing sequence

(Un)nen of subsets of X such that for every n € N the set U, is a convex neighborhood of the origin Eote Z}wt, for Suchxa faﬂglyv we
. ave Up =Up4+1NXy =Upq2n
in X,, and, moreover, X 1NXp =Upn 120Xy, S0 that, in gen-
eral, for every k>0 we have U, =U,, y 1N
1 1 X
U,=U,+1NX, and x1,§m2,...,gmn§§Un+1. (5.7)

This follows from Corollary 5.8.

Initial step. Construction of Us. The construction starts from any convex neighborhood U; €
V1(0). Then, by Lemma 5.6, since x1 ¢ X1, U; C Xy, and X is closed”! in X, there exists a convex
neighborhood V5 € V5(0) such that (cf. Lemma 5.6)

Uy=V,NnX; and .171%‘/2 (5.8)
We set U := V5.
Construction of Uz. We look for a set Us C X3 such that

Uy=U; NXy and xl,%m%(]g. (5.9)
Note that, if such a set Us exists, then Uy = Us N X;=U3N X;. Therefore Us must depend both on

Uy and Us.

Since %xg ¢ Xy and X5 is closed in X3, there exists a convex neighborhood V3 in V3(0) such
that (cf. Lemma 5.6)

Uy=13NX5 and %$2¢V%

The possible issue here is that we cannot set Us:= 15 because we do not know whether x; ¢ V5. We
remedy by using Corollary 5.8. Since x; ¢ Us C X5 and X5 is closed in X3, there exists a convex
neighborhood W3 in V3(0) such that (use again Lemma 5.6)

Uy=W3NXy and x;¢ Ws.

Setting U3 := V5N W3, we conclude. Summarizing, up to now, we have U; C Uy C U3 and 7y,
%$2¢U3:U1UU2UU3-

5.1. The topology V; coincides with the topology induced on X; by the Hausdorff separated topology Vs. But X,
(endowed with V1) is complete, and therefore, according to Proposition 3.33, closed in X2. Reminder: Proposition 3.33.7i%

states that ¢n a Hausdorff topological vector space, every complete subset is closed.
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X

Figure 5.7. Step 2. Since %xz ¢ X5 and X, is closed in X3, there exists a convex neighborhood V5 of 0 in
X5 such that U, =153 X, and %xg ¢ V3. Setting Us := V3N W3, we build a set Us such that U= U; N X, and
Ty, %l’g ¢ Us. Note that, in principle, 2; can belong to X5, but in the picture what matters is that x; ¢ Wi.

Construction of U,,. By induction on n, one can construct a sequence (U,),en such that,
roughly speaking, for every n € N the set U, 1 “escapes” from all the first n elements of the sequence
((1/n)xn)nen and U, 11N X,, =U,. Precisely, for every n € N the set U, is a convex neighborhood
of 0 in X,, and there holds

1 1
U,=U,+1NX, and m1,§x2,...,gaen¢Un+1. (5.10)
We then set
U::Une[NUn. (511)

The set U so built is a neighborhood of the origin (in X). Indeed, it is convezr because union of
an increasing sequence of convex sets; moreover, for every n € N, U N X, is in V,(0) as it contains

Un = U, N X,EV,(0).

eI

Un+1 o lIQ
2
1
/\ At

Figure 5.8. Step 3. By induction on 7, one can construct a sequence (U,,), en such that: » U, is a convex
neighborhood of 0 in X,,. » U, =U,,+1NX,. » 1, él’g, ...,%xn ¢U,t1.

It remains to show that U cannot absorb the set S = {x,},en. Indeed, if U absorbs S, there
exists k € N such that kU D S. In particular, one has %xk €U and, since U :=U,,cnU,, with (Up,)nen
increasing, there exists v € N such that,

1

Emk cU, forall n>v.

But this cannot be the case because, by construction, for every k € N there exists an arbitrary large
n € N such that %xk ¢ U, (precisely for every n>k+1). EENE

5.20. Corollary. Assumptions: Let X be the LF-space defined by the family of Fréchet spaces
(X, Tn)nen- A subset A C X is a bounded subset of X if, and only if, there exists and v € N
such that A CX, and A is bounded in X,.

Note that, strictly speaking, the assertion that A is bounded in X, makes sense only when
A CX,. Therefore, formally, what is meaningful is the existence of a » € N such that A is bounded

in X,.

Note that the sequence of neighborhoods
(U,)n en escapes in a strange way, that is
by increasing its size. Indeed U, C U, 11
for every n € N. This is possible because,
for every n € N, the point z,, lies outside
X,, and therefore also outside X1, X, ...,
X,, _1 owing to the fact that (3C,,),en is
increasing.
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PRrOOF. It is a direct consequence of Dieudonné-Schwartz theorem, together with the compatibility
condition 7, = 7|X, and Proposition 3.43, according to which if M is a topological vector subspace
of the topological vector space X, a subset A C M is bounded in X if, and only if, it is bounded in
M. EENE

5.21. Corollary. Let X be the LF-space. A sequence (z,)nen converges in X if, and only if, the
following two assertions are satisfied:

i. There exists v € N* such that the set {x,}nen s contained in X,,.
1i. The sequence (1,)nen converges in X,.

Note that, strictly speaking, assertion ii. makes sense only when the set {zy}n,en is contained in
X,. Therefore, formally, ii. is a more general result.

ProoF. That [:. and %i.] imply the convergence of (z,,),en is a consequence of Proposition 2.23
because, according to Proposition 5.15, V, =V|X,. Note that this implication holds even for a
generalized sequence.

The fact that the convergence of (x,,),en implies [¢. and 42.] is a consequence of Proposition 3.44
(point v.) which guarantees that every Cauchy sequence is bounded. Indeed, as (z,),en is bounded
in X, from Dieudonné-Schwartz theorem, we infer assertion ¢. For 4i., simply recall that X, is
complete. EENE

5.3.3. Completeness in LF-spaces

It is possible to prove the following result, whose proof can be found in [WILANSKY, Albert. Modern
methods in topological vector spaces. Courier Corporation, 2013, Theorem 13.3.13].

5.22. Proposition. Let (X, V) be the strict inductive limit of the sequence of locally convex spaces
(X, V). If for every n € N the space X,, is complete, then the inductive limit X is complete.

In particular, any inductive limit of a sequence of Frechét spaces is complete (although, in general,
the limit itself is not a Fréchet space).

5.23. Remark. As we will see later, the previous proposition implies that the space D(Q) is complete.
However, it is not a Fréchet space because it is not metrizable (cf. Example 5.17). It follows that
D(Q) is not first countable (otherwise, it would be a Fréchet space). In particular, it is not second
countable.

We talk about topological vector subspace
when the subspace is endowed with the
subspace topology indced by M






FUNDAMENTAL FUNCTION SPACES

6.1 | Spaces of continuous functions and Radon measures

Given a topological space Q, the set C(Q,K) of all continuous (but not necessarily bounded)
functions defined on Q is a (pure algebraic) vector space when endowed with the natural laws of
addition among functions and multiplication by a scalar:

+:(f,9)eC(QK) = f+g:=0eQ— f(z)+g(z)eK (6.1)
cu(a, [)eKxC(Q,K) = af:=rxeQ—af(r)eK

Notation 6.1. Often, to shorten notation, we shall write C'(Q2) instead of C(Q,K).

It is well-known that if Q is a compact set, then the functional || - ||~ f € C'(Q) — pa(f) :=
supgecqf defines a norm on C(Q), and the resulting normed space (C'(Q), | - ||~) is even a Banach
space. However, if Q is not compact, there is no natural way to structure C'(Q, K) into a normed
vector space. Instead, it is natural to endow C'(Q,K) with a topology compatible with the vector
space structure as soon as certain compactness assumptions on the topological space 2 are made.
Precisely, we assume that Q is a o-locally compact Hausdorff space. Under this hypothesis on
Q, according to Proposition 7, there exists an increasing sequence (Q2;);en, of open and relatively
compact sets, covering 2 and such that Q; CQ;4 for every j € N. This property, as we are going
to show, permits to supply C'(Q, K) with the structure of a locally convex space.

6.1.1. The space €(RQ) with Q a o-locally compact Hausdorff space

Let Q be a o-locally compact Hausdorff space. We denote by Rq the family of all compact subsets
of Q. For any f € C(Q) and any compact subset K € Rq, we set
pr(f):=sup | f(z)| =max|f(z)]. (6.3)
zeK

reK
The following result holds.

6.2. Proposition. As K wvaries over all compact subsets of Q, the family (pi)xecga, describes a
filtering and total (separating) family of seminorms on C(Q).

PRrOOF. For any K € Rq the functional py is clearly a seminorm. The family (px )i e g, is filtering
because if K = KU K», with K, Ko € Rq, then pr, V pr, <pr (actually, pr, Vpr, =px). The family
is separating (total) because the singletons are compact and py,,(f)=|f(a)| for every a € Q. mm=m

The natural topology on C'(Q,K) is the locally convex topology mq defined by this family of
seminorms (in the sense of Proposition 4.15 and Definition 4.16). The topological space (C'(Q,K),q)
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Recall Definition 4.8. Let X be a vector
space and (Po)ac.4 a family of seminorms
on X. » We say that the family (pa)ac.a
is total (or separating or that it separates
points) if for every x € X different from
zero there exists an a(z) € A, depending
on x, such that p(2)(x) #0. Equivalently,
the family (po)a e 4 separate the points if
whenever p,(z) =0 holds for every oo € A
then necessarily x =0. » We say that the
family (pa)ac.a is directed or filtering if
the ordered set ({patac.a, =), with = the
usual order relation defined by p. = pg
if and only if p.(x) > pg(z) Vx € X, is

a directed set. In other words, the family
of seminorms (Po)ac A is directed if, and
only if, for every couple of seminorms po,
and p., there exists always a seminorm
Po upper bounding them: p, = p, and
Pa = Pa,. Note that the index set A is
not assumed to be directed in general.

Recall that total and separating are syn-
onyms
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is then denoted by the symbol €(Q, K), or by the symbol €(Q) if it is clear from the context the
underlying scalar field K. The topology 7q is called the topology of uniform convergence on all
compact subsets of Q. Indeed, as a consequence of Proposition 4.34, the convergence of (f\)xea to
f,in €(Q), is equivalent to the condition limp px(f) — f) =0, for every compact subset K € Rq.

More details. Let us particularize Proposition 4.15 to the algebraic vector space C(Q). As (px)xeg, is a filtering
family of seminorms on the (purely) algebraic vector space C'(2), we have that:

Claim 3. It is possible to structure X into a locally convex space declaring as a fundamental system of neighborhoods
of the origin the set consisting of all possible closed semiballs (of any strictly positive «radius») of the seminorms of
the family. In other words, we define a filter basis B on C(Q) by setting

B:={pBs(px)}(p.5)eri x50 = HSECQ) =pr(f) <P} () k) ersx s
{{fEC(Q)335upz€K|f(x)|gp}}(p,K)eRixﬁn'

Claim 7i. Every seminorm px is then continuous on C(Q) with respect to this topology mq (generated by B) and
therefore, for every K € Rg we have (Be(pr))° = Bo(px) and Be(pr) = Bo(px)-

Claim 4i7. The locally convex topology 7q is (Hausdorff) separated because the family (px )i e, separates the points.

Up to now, we did not use the hypothesis that Q is a o-locally compact Hausdorff space. The
assumption is used in the next result, which shows that the space €(Q) admits a countable basis of
continuous seminorms. In particular, cf. Theorem 4.56, €(Q) is a pre-Fréchet space. Later on, we
show that €(Q) is also complete and, therefore, a Fréchet space (cf. Theorem 6.46).

6.3. Proposition. The space €(Q2) admits a countable basis of continuous seminorms. Therefore,
due to Proposition 4.45, €(Q) is a pre-Fréchet space.

PRrooOF. It is sufficient to take, as a basis of continuous seminorms, the one associated with the
countable family of domains (K := Q;)jen where (Q;)jen is an exhaustion of Q by open and
relatively compact sets (cf. Remark 7).

Let us fill in the details. By definition, the family (px,);jen is a (countable) basis of continuous

seminorms if, and only if, the family B:={pBe(px;)}(,,j)cr: xn 15 a fundamental system of neigh-

2%
borhoods of the origin. Therefore, we have to show that for every neighborhood pBs(pr) there exist
Jx» €N and p, >0 such that p,Be(px,) € pBe(pr). For that, is is sufficient to show that for every

Be(pr) there exists j. € N such that Be(pr;) € Be(pi)-

This last statement is simple to prove. Indeed, since (/:= Qj) jeN is an exhaustion of Q, there
exists®! j, € N such that K C K for every j > j.. Hence Be(px;) C
concludes the proof.

Be(px) for every j = j,, and this

An alternative argument relies on the use of Corollary 4.31 which, when specialized to this
context, reads as follows: (px;);jen is a (countable) basis of continuous seminorms on €(Q) if, and
only if, for every continuous seminorm p € (px)req,, there exists a seminorm q € (pr;)jen and a
constant ¢, > 0 such that p(¢) <cpq(p) for every p € €(Q). But then, it is sufficient to observe that
pK(@) < pK](SO) for every j = j.. EECE

6.4. Remark. It is possible to show (cf. Theorem 6.46) that €(Q) is a complete space (i.e., that
the topology 7q turns the space C'(Q2) into a complete space). Therefore, €(Q) is a Fréchet space.
Note, however, that the completeness does not follow from Proposition 5.22, because 7q is not the
inductive limit of Frechet spaces: it has been built from a family of seminorms.

6.1. Let K be a compact subset of Q. Since (2;)jen covers K, it is possible to extract a finite family {Q;,, Q;,,...,Q;,}
with j; < j2 < ... < j, which still covers K. As () en is increasing we have K C Q; and therefore K C Q; for every j > j,.

We stress that, at this preliminary stage,
it makes no sense to wonder if these semi-
norms are continuous. It will make sense
only after Claim <.

Recall that if K, K2 € R and K C Ko,
then px, < px, and therefore Bo(pi,) C
Be(pr,)-
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Figure 6.1. When Q is a bounded open set of R, the Alexandrov compactification of Q can be thought as
obtained by considering on Q=Q& {co} the topology of 0 =Q @ dQ with the identification oo := Q.

Example 6.5. Let Q be any open set of RY, then the characteristic function yq of Q is in C(Q).
More generally, the restriction to Q of any continuous function defined on RY is in €(Q). If Q is the
open unit ball of R, the function =+ exp(—1/(1 — |x|?)) is in €(Q). If Q is the punctured unit
ball of of RV, that is the set {# € R" :: 0 < |z| < 1}, then the function z — |z|~%, a €R, is in €(Q).
In fact, elements of €(2) need not to be bounded functions.

6.1.2. The space €((f2) with Q a o-locally compact Hausdorff space

We denote by Cp(Q2) the subset of C'(Q2) consisting of all those continuous functions that vanish at
infinity. This is the vector subspace of C'(Q2) consisting of continuous functions such that

Ve>03dK.€Rq = |f(z)|<e VreQ\K.. (6.4)

6.6. Remark. The terminology comes from the fact that, as it is possible to show, if Q =QU {o0} is
the Alexandrov compactification of the locally compact space 2, obtained by adjoining the point at
infinity, then the space Cy(2) coincides with all continuous functions on C'(Q2) that can be extended
to by assigning the value zero at the point co.

Recall that if we denote by 7 the topology on €, then the Alexandrov topology on € is defined by
T:=7®{(Q\K)®{oc}: K € Rq}.

where we use the symbol ‘@’ as a substitute of ‘U’ just to emphasize that the union is disjoint. It
follows that if Q is compact, then Q= Q& {c0} with Q and {co} = (Q\ Q) @ {co} both open and
disjoints. Thus, when Q is compact, the Alexandrov compactification gives a disconnected set and
is not very interesting in this case.

Also, if Q is compact, then C(Q) = Cp(Q2). Indeed, if Q is compact, then for every £ >0 one can take
K. :=Q to make vacously true the statement (6.4). From an Alexandrov perspective, the essence
of the story is that when Q is compact, the elements of Cy(Q2) that vanish at infinity are elements
of C(Q) subject to the fictitious constraint that they have to vanish on the connected component
consisting of the single point at infinity {co}.

A necessary and sufficient condition for an element of f € C'(Q) to be in Cy(Q), i.e., vanishing
at infinity, is that for every £ >0 there exists a compact set K. C Q, such that | f(z)| <e for every
x € Q\K.. With this in mind, let us show the following equivalence.

6.7. Proposition. The space Cy(QQ) coincides with the space of all continuous functions f € C(Q)
such that for every e >0 the set {x€Q::|f(x)| >} is compact.
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6.8. Remark. Proposition 6.7 gives another proof of the equality Cp(Q2) =C'(Q) when Q is compact.
Indeed, if Q is compact, then for every £ >0 the set {x € Q::|f(z)| > ¢} is a closed subset of the
compact set © and, therefore, compact.

PRroOF. Indeed, let € > 0. Assuming f € Cy(Q), there exists a compact subset K. C Q such that
| f(z)| <e for every x € Q\K.. Thus {|f|>¢} C K.. But {|f| >¢} is a closed subset (included in
the compact set K.) and, therefore, by weak inheritance, compact®~.

On the other hand, suppose that for every ¢ >0 the set K.:={z € Q:|f(z)| >} is compact.
Then, |f| <e in Q\ K.. This officially completes the proof. However, we want to remark that if
Q\ K.=0, then Q is compact and |f| >¢ in Q. EENE

6.9. Corollary. A continuous function f:Q — K, i.e., an element of C(Q2), belongs to Co(QQ) if,
and only if, there exists a sequence of compact sets (K;)jen such that

lim [ sup [f(z)|)=0. (6.5)
J=00 \ z€Q\K;

More specifically, in one direction, the following (apparently) stronger implication holds. If f €
Co(Q) then (6.5) holds for every sequence of domains (K;:=Q;)jen such that (;)jen is an
erhaustion of Q by open and relatively compact sets.

6.10. Remark. In (6.5), the understanding is that the supremum is computed in Ry, i.e., that
sup ) = 0. In this way, if Q is compact, one can take the constant sequence K;:=Q to infer that
for every f € C(Q) one has lim; o (sup,co\x, | f(2)]) =0. Also, note that if Q is compact and
(Q;)en is an exhaustion of Q by open and relatively compact sets, then Q necessarily belongs to the
exhaustion. Indeed, (Q;);jen covers the compact set Q and, therefore, we can extract a finite cover.
Since the sequence (£2;);en is increasing, the extracted finite subcover has to contain 2 among its
elements. In particular, the sequence (Q;);en is eventually constant when Q is compact, i.e., Q;=Q
except for a finite number of terms.

PrRoOOF. Assume that (6.5) holds. This trivially implies that for every £ > 0, there exists v(¢) € N
such that sup,ca\r, |f(z)]<e. In fact, (6.5) implies that sup,cq\x; | f(2)| <e for every j>v(g)).
On the other hand, assume f € Cy(Q2). Since Q is a o-locally compact Hausdorff space, there exists
a sequence of domains (K;:=Q;);jen such that (€;);en is an exhaustion of Q by open and relatively
compact sets. Any exhaustion does the job. Indeed, for every ¢ >0 there exists an element v(s) € N
such that sup,co\k, ., |f(2)] <e. Since (K;:= Qj)jen is increasing, we have sup,co\x, | f(2)| <e
for every j > w(e); this is nothing but (6.5). EENE

Let us also prove the following simple yet useful observation in the more specific context of RY.

6.11. Proposition. If Q is a bounded open subset of RY, then Co(Q) consists of the restrictions
to Q of all continuous functions in RN that are identically zero on 0.

PROOF. Let f € Cy(Q). If we denote by fyq the extension by zero of f to R" then f is continuous
in RV, i.e., fxa < C(RY). Indeed, f is continuous at any point of R\JQ. Therefore it remains to
show the continuity on 09Q. Let z € 0Q, and let (z))yca be a generalized sequence converging to

6.2. The property of being compact is weakly hereditary. Recall that a topological space property is called weakly
hereditary if whenever a topological space has that property, so does any closed subspace. In contrast, a topological space

property is called hereditary if whenever a topological space has that property, so does any subspace.
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x. For every e > 0 there exists a compact subset K. C Q such that | f| <& on Q\K.. Moreover, as
(x\)ren — o, there exists v. € A such that z) € (Q\K.) U(RV\Q) = (RV\K.) for every A >v.. Hence

| f(x))| <e for every A> w1, such that x) € Q\ K.,
| f(x\)] =0 for every A > . such that x) € RV\Q.

Overall, we have |f(x))| <e for every A > v.. Thus (f(z)))rear — 0. By the arbitrariness of the
generalized sequence (f(z)))ren we conclude.

Vice versa, assume that f € C'(R") is such that flon =0, and let us prove that fjqo € Cp(2). We
use the characterization of Cy(2) given in Proposition 6.7. For every ¢ >0

{lfla@)| Z e} ={lfia(z)[ =€} (6.6)

Indeed Q=QUAJQ and f < e on JQ (actually, by assumption, f =0 on d9). But {lfa(@)|=e}=
QN {|f|=e} is the intersection of a compact subset of R" (the set Q) and a closed subset of R
(the set {|f|>¢}). Hence {| f|q(z)| > £} is compact, and therefore so is {| fio(z)| =€} by (6.6). mmmm

Although the space C(Q2) can be seen as a locally convex subspace of €(2), in general, it is not
a closed subset of €(Q2) (in fact, cf. Proposition 6.30, the closure of Cp(Q2) in €(Q) is the whole of
C(Q)). Therefore, C(2) is not complete® with the topology induced by €(€2). That is the reason
why one usually endow the space Cy(Q2) with the norm

HfHoo::sug | f(@)]. (6.7)

Indeed, cf. Proposition 6.13, with the supremum norm the space C(2) becomes a complete normed
space. We then set €(Q):=(Cy(Q), ||||sc). Note that the supremum in (6.7) is a maximum. Indeed,
if Q is compact, or if f is identically zero, the assertion is trivial. Instead, if |f(zg)| >0 for some
2o € Q, then, by Corollary 6.9, there exists a compact subset K € R passing through xg such that
| f(z)| <|f(zo)| for every z € Q\ K. Therefore

sup | £(2)| = sup | £(x)| = max | (2. (63)
zeQ zeK zeK

In particular, every element of C(Q2) is bounded. In fact, Cp(Q2) C C3(Q2) C C(Q) with Cp(Q2) con-
sisting of those continuous functions in C'(Q2) which are bounded in Q.

Clearly, the following assertion holds.
6.12. Proposition. If Q is compact, then Cy(Q2) =C(Q).

It is simple to show that €y(Q) is a Banach space and the topology generated by ||-||c on Cp(Q)
is called the topology of the uniform convergence on €.

6.13. Proposition. Cy(Q2) is a Banach space.
PRrooOF. It is well known that the set C,(Q2, K) consisting of those continuous functions in C'(Q, K)

which are bounded in Q is a vector subspace of C'(Q, K), and that €;(Q2) := (Cy(Q2, K), ||[|) is a
Banach space. Therefore, it is sufficient to prove that Cp(Q2) is a closed subspace of €,().

6.3. It is well-known that subspaces of complete metric spaces are closed if, and only if, they are complete (see, e.g., Proocof
Wiki). A similar result holds in Hausdorff separated topological vector spaces. A vector subspace of a complete and Hausdorff
separated topological vector space is complete if, and only if, it is closed (see, e.g., pp. 47-51 and pp. 115-154 in NaricI L.,
BECKENSTEIN E., Topological Vector Spaces, Pure and applied mathematics, Boca Raton, FL: CRC Press (2011)).
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Let (fn)nen be a sequence in Cp(2) such that || f,, — f|lec — 0, for some f € €,(Q2). We have
to show that f € Cy(Q). For that, consider a sequence of domains (K;:=Q;);en such that (Q;);en
is an exhaustion of Q by open and relatively compact sets. Again, if Q is compact, then Cy(Q) =
Cy(Q) =C(Q) and there is nothing to prove. By virtue of Corollary 6.9, it is sufficient to show that

lim [ sup [f(z)| )=0.
=00\ zeQ\K;

By assumption (and again by Corollary 6.9) for every n € N, we have lim;_, o (supeq\x; | fn(2)]) =0.
Now, observe that

sup | f(z)| < [[fa—flloo + sup |fulz)l.
2EQ\K; 2EQ\K;

Passing to the limit for 7 — oo in both members of the previous relation, we get that for every n € N
nm< mp\ﬂ@Q < Nfa Flloe
J70 \ z€Q\K;

Passing to the limit for n — oo we conclude. EENE

Example 6.14. Let Q be any open set of R, then the characteristic function yq of Q is not in
Cy(Q). If Q is the open unit ball of RY, the function x+ exp(—1/(1 —|x]?)) is in €y(Q). If Q is
the punctured unit ball of RY, that is the set {x € R" :: 0 < |z| < 1}, then the function z+ |z]|~%,
a €R, is not in €y(Q). The function z — (1 + |z|*) "7 is in €y(RY) for any «, 3 > 0.

6.1.3. The support of a function

6.15. Definition. (Support of a continuous function) Let f:Q — Y be a function defined on a topo-
logical space Q and with values in a topological vector space Y. The domain of nullity of f, is the
biggest open subset Uq(f) of Q where f is identically zero. In other words,

Ua(f) = I?ca)X{U CQ:U is open in Q and fi; =0} (6.9)
= U{UCQ:u=U is open in Q and f;y =0}. (6.10)

In other words, Uq( f) is the interior of the zero-level set of f:

Ua(f)={ze€Q: f(x)=0}°. (6.11)

6.16. Remark. If f is a continuous then the zero-level set of f is a closed subset and, therefore, Uq,
being the interior of a closed set, is an example of a regular open set (cf. Definition 7): Ug(f) =

(Ua(f))°.

The complement Q\ Ug(f) of the domain of nullity is, by definition, the support of f and
is denoted by suppq f. Clearly, suppq f is a closed set (because the complement of an open set).
Moreover, from the relation Q\ (E°) =Q\ E which is valid for any subset F C Q, we infer that the
support of f coincides with the closure (in Q) of the (open) set where f is different from zero:

suppo f = Q2\Ua(f)
= 9\ eQs () =0F)
= Q\{zeQ:u f(x)=0}
= {xeQz= f(x)#0}. (6.12)
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Figure 6.2. Although the function sin: € R+ sin x takes the value zero on any point of the form z;, =7k
with k € Z, we have suppg sin = R because there is no open subset of R where sin is identically zero.

The closure, of course, is taken in Q.

6.17. Proposition. Let f:Q—Y be a function defined on a topological space Q and with values in
a topological vector space Y. The following relation holds:

(suppa [)°=Q\ Ua(f).

Therefore if suppq f has an empty interior then the set of zeros of f is dense in Q. In particular,
if f is continuous in Q and Y is Hausdorff separated, then suppq f has empty interior if, and
only if, f =0 in Q.

PRrOOF. Recalling that the complement of the interior is the same as the closure of the complement,

we have Q\ (suppq f)° = Q\suppq f = Uq(f) from which the first assertion follows (because the
set of zeros of f includes Uq(f)). If f is continuous and Y is Hausdorff separated, we can invoke
the principle of extension of the identities (cf. Proposition 2.39) to conclude. EENE

6.18. Remark. The implication in Proposition 6.17 cannot be reversed. In other words, it is not
necessarily the case that if the set of zeros of f is dense in Q then (suppq f)°=0. For example, if
X0: R— R is the indicator function of the set of rational numbers (the so-called Dirichlet function),
then set of zeros of xg is dense in R but Ug(xq) =0 and, therefore, suppq xo = R.

6.19. Remark. In the definition of suppq f, the closure of {x € Q:: f(x)+# 0} must be taken in Q.
Thus, the support of the constant function x g 1):2 € (0,1) CR+—1€R s (0, 1), while the support of
the constant function y|o 1): 2 €[0,1] C R~ 11s [0, 1]. Also, one does not have to confuse the support
of f with the set where f is different from zero. For example, although the function sin: x € R+ sinx
takes the value zero on any point of the form xj = nk with k € Z, we have suppg sin = R because
there is no open subset of R where the sine function is identically zero (cf. Figure 6.2). Moreover,
note that if f:Q — R is a real analytic function defined in the open and connected subset Q of RV
then suppg f = unless f is the function identically equal to zero (in this case suppqf =0). Indeed,
by the identity theorem for real analytic functions, if f vanishes on an open subset of Q then f
vanishes everywhere in €.

6.1.4. The space () with Q a o-locally compact Hausdorff space

Let Q be a o-locally compact topological space, and let K be a compact subset of Q. We denote by
Kr(Q):=(Ck(Q),|]||sc) the (topological) subspace of Cy(2) consisting of all those functions whose
support (a posteriori necessarily compact) is contained in K. In other words

Ck () :=={f € Co() = suppa f C K }

and Ky (Q) is endowed with the topology induced by €((Q2). Clearly, the space K (Q) is a Banach
space (in fact, Cx(Q) is a closed subset of €y(Q)).



112 FUNDAMENTAL FUNCTION SPACES

Note that K () can also be seen as a topological vector subspace of €(2) because the
topology induced by €(Q) on Cx(Q) coincide with the topology induce on Cx(Q2) by €y(Q2). This
easy yet important observation is formally stated later in Proposition 6.29.

We denote by C.(Q2) the vector space consisting of all those continuous functions whose support
is compact and contained in Q. Note that when Q is compact, C.(Q) = Cp(Q) = C(Q). Again,
according to Proposition 7, there exists an increasing sequence (2;)jen, of open and relatively
compact sets, covering Q and such that Q; CQ;. 4 for every j € N. Clearly, if we set K;:=Q; we have

CC(Q) :UJ‘ENCK].(Q). (6.13)

Moreover, the following statement hold:

i. For every j € N one has Ck,(Q) QCk, () and moreover C.(Q2) =U;enCk;(Q).

J

ii. The topology of K (Q) = (Ck,(Q), 7x;) coincides with the topology induced on Ck,(Q2) by
K, ,,(Q)=(Ck;,,(Q), 7K, ), because both of them are inherited by €(Q2) (equivalently, by
Co(Q)).

We are in the general setting of a strict inductive limit of Frechét spaces (cf. Section 20). In fact,
every K (Q) = (Crk;(Q), ||-|) is a Banach space (in particular a Frechét space).

6.20. Definition. The natural topology on C.(Q) is, by definition, the strict inductive limit 71,r of
the topologies of Fréchet spaces (K (Q))jen= (Ck,(R), 7k;)jen. The resulting space

X(Q):=(Cu(Q), Lr)

is the locally convex space of those continuous functions whose support is compact and contained
in Q.

To have a consistent definition, we have to show that limit topology on K () does not depend
on the covering sequence (2;);en. To this end, we observe that, according to Proposition 5.15, the
topology of K (Q2) coincides with the topology induced on C,(Q) by (). Since every compact
set I € Rq is included in some K, of (K;:=;);en, the following result holds.

6.21. Proposition. For any K € Rq the topology of K (Q) coincides with the topology induced on
Cr(Q) by K(Q).

PRrRooF. The argument is purely topological and coincides with the one that is used later in the
proof of Proposition 6.56. EETE

We then have the following immediate consequence.

6.22. Corollary. The strict inductive limit topology on K(Q) does not depend on the choice of the
exhaustion (£2;)jen.

PRrooF. The argument is purely topological and coincides with the one that is used later in the
proof of Corollary 6.57. EECE

Moreover, as a direct consequence of Proposition 5.13 and of Proposition 5.18, we get the
following result.

Recall the compatibility result for
induced topologies. In general, if S is a
topological space, and A C B C S, the sub-
space topology that A inherits from the
subspace B (endowed with the topology
induced by S) is the same as the one it
inherits from S.
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6.23. Proposition. For a linear map u from K (Q) into a locally convex space, the following three
assertions are equivalent:

i. The linear map u is continuous.
1. The linear map u is sequentially continuous.

i11. For every compact set I of Q, the restriction of u to Ky (Q) is (sequentially) continuous.

Convergence in K(Q) can be characterized by particularizing the Dieudonné-Schwartz theorem
(Theorem 5.19), more precisely Corollary 5.20 and Corollary 5.21, to the current setting.

6.24. Proposition. Let Q be a o-locally compact topological space. A subset B(Q2) of K(Q) is
bounded if, and only if, there exists a compact subset K € Rq such that B(Q) C Ky (Q) and B(Q)
is bounded in Ky (Q). Namely:

(suppo ¢ CK Vo€ B(Q)) and < sup pK(g0)<oo>.
pEB(Q)

A sequence (on)nen of elements in K(Q) converges in K(Q), if, and only if:

i. There exists a compact set K € Rq such that the set (pn)nen s contained in K (Q), that
18, if suppayn C K for every n € N.

it. The sequence (@n)nen converges in Ky ().

Note that, under the two previous conditions, @, — ¢ in K(Q) for some ¢ € Ky (Q) and, therefore,
necessarily suppg ¢ C K.

Eventually, by Proposition 5.22, we infer the following result.

6.25. Proposition. The space K(Q):=(C.(Q), TLF) s a complete locally convex space.

6.26. Remark. When Q is compact we have K(Q)=€C(Q) = €C((Q).

6.27. Remark. Note however, that if Q is not compact, then K(Q) is not a Frechet space. In fact, it is
not metrizable. In particular, K(€2) does not admit a countable basis of neighborhoods of the origin.
To show that & () is not metrizable, let us consider the usual sequence of domains (K :=Q;);jen
with (©;);en an exhaustion of Q by open and relatively compact sets. To the sequence (K;:=;);en
we associate a sequence of Urysohn functions (¢;,),en in K(Q), such that ¢, (z) =1 for z € K, and
on(x) =0 for z € Q\ K,,41. Aiming at a reductio ad absurdum argument, assume that dpr is a metric
on C,(Q2) which induces the same topology 71 of K(Q). If the metric dir induces the topology 7,
then the dpp-ball B, (Q) centered at the origin and of radius 1/n has to be a neighborhood of the
origin. In particular, B,,(Q) has to be absorbing and, therefore, for each n € N there exists ¢, >0
such that ¢, := ¢, € By(Q). But then, drp(1,,0) — 0 in R, and therefore, ¢, — 0 in K(Q). But
this is in contradiction with the characterization given in Proposition 6.24. Indeed, there exists no
compact subset of Q which includes the support of every v, because suppqw, =suppap, and the
sequence of Urysohn functions (¢,,),en has been built so that suppqyp,, escape from every compact
subset of Q (in fact, Q = U, cnsuppayy). Summarizing, if K(Q) is metrizable, then there exists
a sequence of functions (t,,)n,en that converges to zero in K(Q) and, at the same time, does not
converge in K (). This is, hopefully, a contradiction.
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Example 6.28. Let Q be any open set of RY, then the characteristic function of Q, yo:z €Q—1€R,
is not in I(Q). If Q is the open unit ball of RY, the function n:x € Q+exp(—1/(1—|z|?)) R is in
Cy(Q) but not in K (). On the other hand, nyq € K(R"Y). Note that if Q is an open and connected
subset of R, there exists no real analytic function f:Q — R in K(Q) other then the identically zero
function. Indeed, if f is not identically equal to zero, then suppqf is a compact subset of Q and,
therefore, Uq( f) is an open subset of R"Y. By the identity theorem for real analytic functions, if f
vanishes on 2 then f vanishes everywhere in 2.

6.1.5. Relations among the spaces €(RQ), €¢(R), K () and IK(Q)

In literature, the space Ky (Q) is often denoted as C (), while the space K(Q) is simply denoted
as C,(Q). Instead, we shall stick on a conceptual distinction. For us, the (purely algebraic) vector
spaces Cx(Q) and C.(Q) are defined as the carrier sets of the locally convex spaces Ky (Q2) and
XK (Q2). In other words€y(Q2)

K (Q) = (Cr(2); [[-loc)  and  K(Q) = (Ce(Q), Tvr)-

Order relation among the topologies. Obviously, for any compact subset K of Q, one has

(Cr(2), [-lc) S (Ce(Q);mr) S (Co(Q); [-lc) S (C(Q);70)

Kr(Q) X(Q) Co(2) c(Q)
More precisely:

e The strict inductive limit topology on XK () is finer than the topology induced on C,(2) by
Co(Q).

This is trivial, but to realize this, observe that this assertion means that the inclusion K(Q) —
(Ce(2), || loo) is continuous. As the inclusion is a linear map, and (C.(Q),||'||«) is a locally convex space
(actually a normed space), to prove that the inclusion is continuous, one can check that the restriction of
the inclusion to any Ky () is continuous. And now one can immediately realize that it is trivial because
if (zn)nen —0in K (Q) then clearly (||| co)nen — 0, or, equivalently, because the topology of Ky ()
coincides with the one induced by €(2) on Cx ().

e The topology of Cy(f) is finer than the topology induced on C(Q2) by C(Q).

This is trivial because if (2,,)pen — 0 uniformly on Q, it converges uniformly on every compact
subset of Q. To show that, in general, the topology is strictly finer, one can consider the sequence
(pn(z) :=@(x —n))pen in Cy(R) defined by translating by n € N a function ¢ in C.(R) with nonempty
support, e.g., a triangular pulse. Clearly, ¢,, converges to zero on every compact subset of R, but ,, does
not converge uniformly in R to zero. The counterexample could seem a consequence of having chosen
an unbounded subset of R. But this is not the case. A similar example can be constructed on the open
interval (0,1) as in Figure 6.3.

©1 Pn

.

0 1

Figure 6.3. A sequence of function in Cy(Q2), with Q= (0, 1), which converges to zero uniformly on
every compact subset of Q, but does not converge to zero uniformly on Q (because supq |¢,| =1 for
every n € N).

Recall that the carrier set of a topological
space (X, 7) is simply X.
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It is also clear that

6.29. Proposition. On Ck(Q) the topologies induced by K(Q), €y(Q) or C(Q) are identical.

6.30. Proposition. (Density relations) The vector space C.(Q2) is dense both in Cy(Q) and C(Q):

Closure(c,(q),|-]..)[Cc()] = €o(Q2) and Closure(c(q),)[Ce(Q)] = €C(Q) -

In particular, since Ce(Q2) C Co(R) we also have Closure(c(q),)Co()] = €C(Q).

These density relations imply (cf. Remark 6.31) that the space C.(Q) is not going to be complete
as a topological vector subspace of €(Q) or €((Q2), as well as that C(2) is not going to be complete
as a topological vector subspace of €(Q2). Therefore, it is not a closed vector subspace of €(2) and,
in particular, it is not complete with the topology induced by €y().

PROOF. Let us prove that Closure ¢, (q) )Ce()] = €Cp(Q). As usual, we can focus on the case

7H||oo

in which Q is not compact. Pick any element fy€ €y(Q2). By definition, given € > 0 there exists a
compact subset K. C Q such that

sup | fo(z)[ <e.
zeQ\ K,
On the other hand, according to Urysohn lemma (Lemma 7), there exists a Urysohn function

n: € Ce(Q), 0< n-< 1, such that n.=1 on K.. We set f.:=1.fy. Clearly f.€ C.(Q) and moreover,
as | fo— f:/=0 on K., we have

Ifo— fello = max{sup \fo— fol, sup \fo—fe\}

zeKe reQ\ K.

= sup ‘fO_f€| = Ssup ‘1_77€Hf0‘
rzEQ\K. zeQ\ K.

= sup |fo| <e.
z€Q\ K.

The arbitrariness of € concludes the proof. EECE

6.31. Remark. Let us make a comment on the density of C.(Q2) in €y(R2) and €(Q2). We want to point out a possible
lack of completeness that other possible topological choices could have introduced, stressing in this way the reason
why the topologies we introduced are somewhat natural.

First, note that the sup-norm || f||oc :=supeq | f(2)| is also a norm on C.(Q2), but if endowed with this norm the space
C.(Q) is not complete because of the density of C.(Q2) in €y(Q). Indeed, the density of C.(Q2) in €((2) means, in
particular, that for every f € Cy(2)\C.(Q) there exists a sequence of functions f, € C.(Q) which, although a Cauchy
sequence, does not converge in the normed space (C.(), ||-||s) because (by construction) it converges in €y(Q2) to
[ ¢C.(Q2). Since completeness is a fundamental requirement for function spaces, both in theory and in the applications,
that is the reason why one endows the space C.(Q2) with the topology 7ir that turns it into the complete space K ().

. N - Py R
tl t2

Figure 6.4. The sequence t,X[—n,n is in Ce(R), but tyx[—n,n)— 1 in €(R). Indeed, t,x[—n,n) — 1 uniformly

on every compact subsets of R.

In the same way, the topological vector space (C.(Q),7q), i.e., the vector space C.(Q) endowed with the €(Q)-topology
of uniform convergence on all compact subsets of , is not complete. That is why one endows the space C.(Q2) with a
topology that turns it into the complete space K(Q2). The existence of a Cauchy sequence (C.(Q2), 7q) which does not
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converge is clear on a theoretical ground: one can follow the same argument described for (C.(Q), ||-||). Nevertheless,
a concrete example is given by the sequence of trapezoidal functions x[_, n)(2)t,(z) with ¢,(x) having as graph
in R? the trapezoid (having the main base removed) of bases [—n,n] x {0} and [—n/2,n/2] x {1}. The function
tn(%) X[=n,n) () is the extension by zero of ¢, outside X[_,, ). It is clear (cf. Figure 6.4) that t,Xx[—n n] € Cc(R) and
that t,,x[—n,n) — 1 in €(R), because t,, X[y, — 1 uniformly on every compact subsets of R. But the constant function
z € R 11is not in C.(R).

6.1.6. Radon measures

6.32. Definition. We call (complex) Radon measure on , every linear form which is continuous on
the topological vector space K(Q).

The value of a Radon measure ;1 on a function ¢ € K(Q) is usually denoted in one of the
following ways:

n(e), {1y p), As@du-

The set of all Radon measures on ( is, therefore, nothing but the topological dual of K(Q) and is
denoted by K'(Q2) or by M(€). One will endow this space both with the strong-+ dual topology and
the weak-* dual topology. Note, however, that in this context, the weak-* dual topology is usually
referred to as the vague topology or as the topology of vague convergence of measures.
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The spaces EF(Q) (k€ N,Q C RN, Q open)

The symbol N stands for the extended set of natural numbers NU {oo} ={0,1,2, ..., 00}.

6.2.1. Multi-index notation

We denote by Q a nonempty open subset of R" (IV € N*). The generic point of Q will be denoted by
2= (z1,...,z5). The euclidean norm of x will be denoted by |z|. In other terms, for every x € R
we set |x|?:= 7+ - + 2.

We shall make use of the multi-index notation. This is a convenient mathematical notation
that simplifies formulas used in partial differential equations and the theory of distributions. It
generalizes the concept of an integer index to an ordered tuple of indices.

6.33. Definition. An N-dimensional multi-index is an N-tuple a = (a1, as, ..., ay) € NV of non-

negative integers.

For every multi-index oo € NV and x € R", we define the absolute value of o and the monomial

o

T as

o) ;=1 +ag+ - +ay and z*:=axf' 5% P (6.14)

Thus, 2% is a monomial of degree |a| in NV variables. The set N*V of multi-indices is endowed with
an operation of addition and with a partial order relation. Precisely, for every pair of multi-indices
o= (a1, a2,....,an),B=(B1, B2, ..., Bv) € NV we set

o +B:= (a1 + B1, a2+ P, ..., an + Bn), (6.15)

and we write B <o if §; <, forevery i=1,..., N. Note that, if p < o then |B| < |a| while the converse
does not hold (consider o= (3,0) and B =(2,2)). Note that the monomial notation allows writing
expressions that appear as a product of vectors. What we mean is that an expression like 2%yP
makes sense because it is nothing but the product of two monomials:

B

PB= (291 252 2BV (g a2

oL
.[L'Q

T x]%N) (6.16)

In particular, we have 2%y* = (z1y1, ..., znyy)* and 2P = 2%+,

If B<a, and only in this case, we set

Q*BZ:(O{I*BLQQ*BQ,...,OéN*BN). (6.17)

Also, we define the factorial o!:= 1! a!...an! and, when B < o, the binomial coefficient

o a1\ /oo aN o! aq! ! ay!
— = = . . 6.18
<B> <ﬁ1>(ﬁ2> <5N> Bla—B)!  Bil(ar—B1) Bol(ae—B2) Bwl(an —BN) (6.18)
After that, for a € NV, m € N and arbitrary =, y € R"Y we can write the Newton multinomial formulas

in the following concise forms

(z+y)* (6.19)

Il
7~
~——

8

=
<

R

S

Il
7~
~—

<
=™

8

i

(x1+x2+... _|_:L‘N)m = Z —.J/‘B. (6.20)
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The expansion (6.19) is known as multi-binomial theorem. For the sake of clarity, let us show how
(6.19) is obtained. By the binomial theorem, we have

(x+y)* L1+ Y1, N+ YN)®

T+ Y1) (o + yn) N

aq N
al) B1, a1—PF1 (O‘N) BN, an— BN
x Y "E
E (51 1Y E By )1 Y1

(
(

B1=0 Bn=0
- £ S e
GRS
B<a

Finally, the a-order partial derivative symbol D% is defined by

0‘u‘| (7 (0% (0% o o
0" = D% = g — 01 05 O = (D1, D) ) (6.21)

where the notation 0; as a shortcut for ai_.

6.34. Remark. Formally, the multi-index notation does not permit to express all possible mized
partial derivatives. Indeed, it is not possible to express the second-order mixed partial derivative
0201 = 02 / (Ox9011), but only the mixed partial derivative 9105 = 92/ (0x10x2) which is associated
with the 2-dimensional multi-index (1, 1) of absolute value |(1,1)| =2. However, this does not
cause any trouble because, in the theory of distributions, the Schwarz theorem on the symmetry
of mixed partial derivatives always holds. Mized partial derivatives do not depend on the order of
differentiation with respect to the different variables.

6.2.2. The vector spaces C¥(Q) (k € N,Q C RN, Q open)

6.35. Definition. We say that a function f defined in the nonempty open set Q C RY is of class C*
on Q, k€N, if D*f exists and is continuous for every multi-index o € NV such that |o| < k. We say
that f is of class C'™ (or infinitely differentiable) on Q, if it is of class C* for every k € N.

Let us recall that for a function f of class C**! on Q the Taylor fomula holds:

faty) =3 = Y D% () + Ris1(, 1) (6.22)
|oc\<k '
with
Riii(x,y):=(k+1) Z y/ $)*D*f (x4 sy) ds (6.23)
|a|=Fk+1

for every couple of points x,y € R" such that the closed segment [z, 2 + 9] is included in Q. Recall
that the closed segment [,z + y| is given by {z +ty = 0<t <1},

Given two functions f, g of class C* on Q, the product function fg is still of class C* on Q and

the Leibniz formula holds:

D*(fg) = <B> DBfD* By for any ae NV = | < k. (6.24)
B<a
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6.36. Definition. Let Q be a nonempty open set of R"Y. We denote by C*(Q,K) the set of all K-
valued functions defined on Q and of class C* on Q. As usual, K=R or K=C, and often, to shorten
notation, we will simply use the symbol C*(Q).

6.37. Proposition. The set C*(Q), when endowed with the usual operations of addition, mul-
tiplication by a scalar, and multiplication of functions, becomes an unital algebra over K, the
multiplicative identity being the characteristic function x € Q— 1€ K of Q.

PROOF. It is straightforward to check that C*(Q) is a vector space. That C*(Q) is closed under
the multiplication operation (f, g) € C*(Q) x C*(Q) + fg follows from the Leibniz rule (6.24) and
the fact that the product of continuous function is continuous. EECE

6.2.3. The (Hausdorff) separated locally convex space £*(Q) (k € N, Q C RV, Q open)

Let Q be a nonempty open set of RV, Let K € fg be a compact subset of Q and let & € N. For any
f€C*Q) and any m € N such that m <k we set

pr.m(f):= sup sup|D*f(z)|. (6.25)
la|<m ze K

Of course, when k = oo the condition (m < k) is unnecessary.

Note that, according to WEIERSTRASS’s extreme value theorem, the suprema in (6.25) can be
replaced by the maxima.

Example 6.38. It can be useful to make explicit the expression of px ,,,( f) for some values of m € N.
For m =0 we have |a| =0 if, and only if, « = (0,...,0) € NV and therefore

prc.o(f) = sup |f(a)] = max] ()]

zeK
For N=3and |a|=1 we have {|a| <1} ={|o| =0} U{|a| =1} ={(0,0,0)} U{(1,0,0),(0,1,0),(0,0,1)}

and therefore

prc1(f)

prco(f)V <sup sup I&f(x)\)

i€EN3 xeK

= (mapls@)) v (g max 7@ ).
For N =3 and |a| =2 we have {|a| <2} = {|o| =0} U{|ae| =1} U{|a| =2} = {(0,0,0)} U{(1,0,0),
(0,1,0),(0,0,1)} U{(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)}, and therefore
bica(f) = wica() v( sup sup ra?jﬂm)\)-
(i,5)EN3 €K
Eventually, since for every a € Q the singleton {a} € Rq, we have

Prayo(f)=If(a)l and poym(f)= sup [D*f(a)l.

o[ <m
The following result holds.

6.39. Proposition. When the compact set K wvaries over all possible compact subsets of 2, and
m varies over all natural number less than or equal to k, the family (Pi m)K e sg.m<k describes a
filtering and total family of seminorms on C*(Q).

A unital or unitary module is a module
over a unital ring in which the identity
element of the ring acts as the identity
on the module. A unital algebra A over
a field K is an algebra over K which is
unital as a ring
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PRrOOF. Every px , is a seminorm because for every multi-index |a| <m the functional px (f):=
supyex |[D*f(7)| is a seminorm on C*(Q) and p ,, is nothing but the superior envelope of the finite
number of seminorms (PK,a)\a\gm- The family (pr m)K e go,m<k is filtering because if K = KU K>
and m =mq1V msy then

pKhml \ pKz,mg < PK m-

The family (P m)Kesq,m<k separates the points (is total) because, pi,y.0(f) = |f(a)| for every
a €. EENE

6.40. Definition. The natural topology of C*(Q) is, by definition, the locally convex topology 76
induced by the filtering and separating family of seminorms (px ,,) defined by (6.25). We denote
by &€%(Q) the locally convex space (C*(Q),75).

6.41. Remark. Note that, for k=0, we have £€°(Q) = €(Q2). We introduced the space €(Q) separately
because for €(Q) no differentiable structure is needed on the topological space Q. Indeed, we
introduced €(Q) for any topological space Q which is a o-locally compact Hausdorff space. Here,
instead, we restrict ourselves to open subsets of RY.

6.42. Corollary. The space €(Q) is a (Hausdorff) separated locally convex space.

PRrooF. It follows immediately from Proposition 6.39 and Proposition 4.15. EECE

6.2.4. Convergence in EX(Q)

If one wants to give a name to the topology 784, we recall that, for every k € N, it is sometimes
referred to as the k-smooth uniform convergence on all compact subsets of 2. When k= oo, it is
simply referred to as the smooth uniform convergence on all compact subsets of 2. This stems from
the characterization of 7§ stated in the next result.

6.43. Proposition. A generalized sequence (f\)xen of elements of CF(Q) converges to f € C*(Q)
in €%(Q) if, and only if, for every multi-index o€ NV with |a| <k, and for every compact subset
K CQ, the generalized sequence of functions (D*f\)rea uniformly converges to D*f on K.

PROOF. As a consequence of Proposition 4.34, the convergence of (f\)rca to f, in EF(Q), is
equivalent to the condition limp px ., (fr— f) =0, for every m <k and every compact subset K &
Ra. EENE

6.44. Remark. Note that, when k < oo , it is possible to obtain the same topology by considering

the “simpler” family of seminorms

FeC™(Q) = py, s (f):= sup sup[D*f(x)],
la|< k z€K
in which just the compact set K varies in £, that is, the family (px ; )xeca,. On the other hand,
when k = oo, the relations
lim ( sup sup |D*( fn(x) — f(x))\) =0

n—00 \ qeNN zeK
and

lim( sup sup\D“(fo)f(x))\)zO vm e N
n—00 ‘q|< m TeK
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have different meanings. The more “complicate” family of seminorm (px ) K e 5, m<i allows unifying
the treatment of the cases k < 0o and k = oo.

6.2.5. €¥(Q) admits a countable basis of continuous seminorms

The following result holds.

6.45. Proposition. The space €¥(Q) admits a countable basis of continuous seminorms. Therefore,
E(Q) is a pre-Fréchet space.

Proor. It is sufficient to take, as a basis of continuous seminorms, the family
(Prc;,m)jeN,m<k

associated with the countable family of domains (K :=Q;);en where (Q2;)jen is an exhaustion of
Q by open and relatively compact sets (cf. Remark 7). Indeed, for any K € fq there exists j, € N
such that K C K for every j > j,, and therefore px ,, < P, ,m- But then, the assertion follows by
Corollary 4.31. EETE

6.2.6. Completeness of E*(Q)

6.46. Theorem. For every k € N, the space Sk(Q) 18 a Frechét space.

6.47. Remark. When k=0, the proof that we give works also for Q a o-locally compact Hausdorff
space.

PROOF. According to Proposition 6.45, the (Hausdorff) separated locally convex space £F(Q)
admits a countable basis of continuous seminorms. Therefore, it is sufficient to prove that €¢(Q) is
(sequentially) complete. We split the proof into three steps.

Step 1 (The space €°(Q) = €(Q) is complete). Let (f,),en be a Cauchy sequence in €(Q). For
every z € Q, the numerical sequence ( f,,(z))nen is a Cauchy sequence with respect to the topology
of K. Since K is complete, there exists a number f(z)€ K such that

lim f(z)= f(z) inkK.

n— o0

Thus, it is well-defined the function = € Q— f(z) € K. Next, let K € R be a compact subset of
Q, and denote by g, := f, i the restriction of f, to K. By assumption, the sequence (g,)nen is a
Cauchy sequence in the complete space €(K ) and, therefore, (g,)nen converges uniformly on K to
some function gx € €(K). Clearly, fjx = gk because uniform convergence and pointwise convergence
are compatible. By the arbitrariness of K € Rq, the sequence ( f,,),en uniformly converges to f on
every compact set K € Rq, and this is precisely the convergence of (f,,),en to f in €(Q).

Step 2 (the graph of V is closed). We observe that if Q is an open subset of RY, the graph of the
gradient operator

V:fec&(Q)—Vfe&(Q)N

is closed in €°(Q) x €°(Q)V. In other words, if (f,, V fu)nen is a sequence in E1(Q) x (E°(Q))Y
converging in €°(Q) x (E°(Q))Y to some (f, g) € E%(Q) x (E°(Q))" then (f, g) is still a point of

Recall that since £F(Q) is a first
countable topological vector space, the
notion of complete space reduces to
that of sequentially complete space (cf.
Remark 4.44).

Do not confuse C(K) and K (Q).
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the graph of V, i.e., necessarily g =V f. The fact that the graph of V is closed is a consequence of
the following well-known result: If (f,,),en is a sequence in E1(Q) such that (V fn)nen converges
in EXAQ)N to some function g € E°(Q)Y, and if in every connected component of Q there exists a
point x such that the numerical sequence (fn(z))nen converges in K, then there exists f € E4(Q)
such that (fn)nen— fin EYQ) and g=Vf.

Step 3 (€%(Q) is (sequentially) complete for any k € N). Let (f,,),en be a Cauchy sequence in
€F(Q). For every a.€ NV such that |o| <k, the sequence (D*f,,),cn is a Cauchy sequence in £°(Q).

Since £°(Q) is complete, for every a.e NV there exists g% e SO(Q)N‘“‘ such that
vielf, —gl* in €9(Q).

We set f:=g", g:= gll‘, and we argue by induction using the fact that the gradient has a closed
graph. Precisely

Vg ~ 9=V
vE-lf, VklfE

Vi gt 9TV Y

But then, for every multi-index o € NV such that |a| <k, the sequence (D*f,),cn converges in
EY(Q) to D*f. In other words, (f,)nen— f in EF(Q). EEEE

6.2.7. Appendix: termwise differentiation of sequences

Example 6.48. Consider the sequence of real-valued functions defined by f, for every

(z):= %
+ncx
n €N and for all x € R. Let f =0 be the function identically equal to zero. Clearly, one has f, — f

pointwise in R, but the convergence is not uniform because

fn(l/n):% Vn €N. (6.26)

Indeed, recall that if a sequence of real-valued function ( f,,),en converges uniformly to a function
fin R, then f,(z,) — f(x,)— 0 for any sequence (z,,),en of points of R. This is because of

n—+o00
| fr(zn) = flan)| < Sup | fol2) = f(2)| ———0.
e
Note that ( f,,)nen gives an example of a sequence in €(R) which converges pointwise to an element

of €°(R), but does not converge in €’(R) because, for example, the convergence is not uniform in

(n— n3m2)

any compact set passing through the origin as (6.26) shows. Also, we have that 0, f,,(z) = TrnZd)e

Hence, 0, fn(x) = 0=20,f(z) if x#0, but 0, f,(0) =n— +00#0=20,f(0).

Example 6.48 shows the existence of a sequence (fp, Ozfn)nen in the graph of the gradient
operator 0,: f € EY(R) +— 0,.f € E°(R) that does not converge to an element of the graph of d,. This
is because ( f,,, Oz fn)nen does not converge in €°(Q) x €°(Q). Indeed, the aim of this section is to
show that the graph of the gradient operator

V:fec&YQ)—Vfec&Y(QN
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Figure 6.5. Let B, € Rq be a closed ball in Q with nonempty interior B, (i.e., that contains more than one
point), and let d, be the distance of Be to o€ Q. It is well-known that this distance is achieved, i.e., that
there exists zo € Bo such that d, = |ze — 29|. We denote by ~e a smooth curve in Q joining ~v.(0) = z¢ and

Yo(1) =4, and by T, its image in Q.

is closed in €°(Q) x €°(Q)". In other words, we want to show that if (f,, V f,).en is a sequence in
E(Q) x (E°(Q))" converging in €9(Q) x (E°(Q))" to some (f,g) € EL(Q) x (EY(Q))Y then (f,g) is
still a point of the graph of V (i.e., necessarily f € &'(Q) and g =V f). In fact, we prove something

stronger.

6.49. Theorem. Let Q be an open subset of RY, and let (f,)nen be a sequence in EY(Q). If
(V fu)nen converges in E9(Q)N to some function g € E°(Q)Y, and if in every connected component
of Q there exists a point xy such that the numerical sequence ( f,,(zo))nen converges in K, then
there exists f € E1(Q) such that (fn)nen — f in EY(Q) and g=Vf.

PROOF. We can assume that €2 is connected. Let B, € Rq be a closed ball in Q with nonempty
interior B, (i.e., that contains more than one point), and let de be the distance of B, to o€ Q. It
is well-known that this distance is achieved, i.e., that there exists x4 € Be such that d, = |24 — 20|
We denote by v, a smooth curve in Q joining 7.(0) =z and (1) =z, and by I its image in Q
(cf. Figure 6.5).

Next, observe that for every m,n € N the function
Pm,n = fm - fn

is continuously differentiable on the compact set K := B, UT, because ( f,),en is in €(Q)". Hence,
if we denote by 7, the line segment joining 7,(0) =z, and 7,(1) =z, then for every x € B, we have

|om,n(T) = Pmn(zo)| < [(©m,n0Y2)(1) = (Pm,n 0 Y2)(0)| + [(Pm,n 0 Ve) (1) = (Pm,n0 Ve)(0)]
1 1
< [ 10tennormOld+ [ 10teniom(0]

1 1
- / IV mn(a()] 7(8)] i+ / IV om0 ()] dt
0 0

< (L(72) + L(78)) sup [Voma(y)l,
yeK
where we denoted by L(7) the length of ~. Clearly, since 7, is a line segment contained in B, we
have L(~v,) < diam(B,) and, therefore,
|m n(2) = m n(20)| < (diam(Bs) + L(7)) sup |Vom n(y)|
yeK
In particular, by the reverse triangular inequality, we get

Sup [@m,n(2)] < |om,n(w0)| + (diam(Ba) + L(7s)) sup |Vm n(w)|.
zeK reK
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On the other hand, by hypotheses, we know that sup,ex |Vm n(z)| — 0 for (m,n) — co because
V fn converges uniformly to g on every compact subset of 2 and, therefore, it is uniformly Cauchy
in EY(K). Also |pm n(20)| — 0 because, by hypothesis, (f,.(20))nen converges in K. Tt follows that
lim  sup |@m. n(z)|=0.
(m,n) =00 gk

But since ¢y, 5, := fi, — fn, this means that ( f,,),en is uniformly Cauchy in K and, therefore, since
E'(K) is a complete space, there exists f € E'(K) such that

(fu)nen — f uniformly in K.

Note that such a limit f depends only on the sequence ( f,,),en and not on K because, a posteriori,
f is uniquely determined as the pointwise limit in K of ( f,,)nen-

In particular, we have (f,),en — f uniformly in B,. This entails that for every ¢ € C2°(B,),
Bs=(B,)°, it is well defined the functional (distribution)

(fr 0) = A} fal@) () dz,

and (f,, ©) — (f, ) when n— co. Also, for every ¢ € C2°(Bo, RY) it is well defined the functional
(derivative of a distribution)

(V for ) = — /9 fol) divep(x) da,

and, moreover, (V f,,, ¢) = (V f, ¢) when n— oco. On the other hand, by uniform continuity of
V [, to g in B,, we know that

(Vfnsp) = (g, ) YeeC(Bo).

It follows that V f = g in B, because of the fundamental theorem of the calculus of variations (which
assures that the limit in the sense of the distributions is unique). In particular, f € &' (B,).

Overall, in the statement’s hypothesis, we know that for every closed ball B, € R the gradient
V f of f exists in a classical sense in B, and V f =g in B,. In particular, V f is continuous on B..

By the arbitrarity of B, we conclude that there exists a continuous function f defined in
the whole of Q such that f, — f in €'(B,) for every open ball B, well inside of Q (i.e., such that
Be = B, C Q) and, moreover, there holds that V f = g in Q. But then, if K is an arbitrary compact
subset of Q, one can cover K by a finite number of open balls that are well inside of 2 and, therefore,
to conclude the proof, it is sufficient to observe that if a sequence converges uniformly on two subsets
of Q then it also converges uniformly on their union. EENE

6.50. Remark. Theorem 6.49 is sufficient to prove the completeness of the spaces £*(Q) and, there-
fore, we are happy with that. However, for the sake of completeness, we recall that by using ¢, ¢
techniques, one can prove a one-dimensional analog of it, which does not assume continuity of the
derivatives. Precisely, the following result holds (see, e.g., RUDIN, WALTER. Principles of mathe-
matical analysis. New York: McGraw-Hill, 1964). Let K be a compact interval in R and let ( fn)nen
be a sequence of real-valued functions that are differentiable on K. Suppose that (f}),cn converges
uniformly on K to some function g and that, for some xo€ K, the numerical sequence ( fn(x0))nen
converges. Then there exists a function f that is differentiable on K, such that (fp)nen — f uni-
formly on K and f'(x)=g(x)=1lim, 1 f,(z) for all z € K.
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The spaces D*(Q) (k€ N,Q CRY,Q open)

Reminder. (Support of a continuous function, cf. Definition 6.15) Let f be a continuous function defined on the
topological space Q. The domain of nullity of f, is the biggest open subset Uy (f) of Q on which f is identically zero.
In other words, Ug(f):=U{U CQ::U is open in Q and fjy =0}. The complement Q\Uq(f) of the domain of nullity
is, by definition, the support of f and is denoted by suppq f. Note that the support of f coincides with the closure
(in Q) of the set where f is different from zero: suppq f={z € Q= f(x)#0}, the closure being taken in Q.

6.3.1. The vector space C¥(Q) (k€ N,Q C RN, Q open)

6.51. Definition. Let Q be a nonempty open set of RY. For any compact set K € R, and any k € N,
we denote by CF(Q) the subset of C*(Q) consisting of those functions whose support is contained
in K. In other words:

CE(Q):={f € C¥Q) = suppaf C K }. (6.27)

Then, we denote by C*(Q) the subset of C*(Q) consisting of those functions whose support is a
compact subset of Q. In other words:

CHQ):={f e C*Q) : suppaf € Ra}. (6.28)

Clearly, C/(Q) C CK(Q) for every K € Rq, and CF(Q) = Uk e, CH(Q). Also, according to Proposi-
tion 7, there exists an increasing sequence (€;);en, of open and relatively compact sets, covering Q
and such that Qj C Q41 for every j € N. Clearly, if we set K;:= Qj we have

CHQ) =U;enCr,(Q). (6.29)

6.52. Proposition. The set Cck(Q), when endowed with the usual operations of addition, multipli-
cation by a scalar, and multiplication of functions, becomes an algebra over K (not unital because
xa:z € Q1K is not in C¥(Q)). Moreover, C¥(Q) is an unital module over the unital algebra
CKQ).

PROOF. Note that C¥(Q) is a subalgebra of C*(Q). Indeed, for any f, g€ C*(Q) we have fgec C¥(Q)
because of Leibniz rule (6.24), the fact that the product of continuous function is continuous, and
the following relations concerning the support of a function: for any f, g€ C*(Q) (in particular for
any f, g€ C¥Q)) and any multi-index |o| <k

suppa(fg) C (suppq f) N (suppa g) and suppo(D*f) Csuppq f.

Finally, it is clear that the identity element of C*(Q), namely the characteristic function yq:
reQ— 1K, acts as the identity on the module. EENE

We have already pointed out that when Q is a general topological space, the space C.(Q2) can
reduce to the trivial vector space containing just the null function, and this is never the case when
Q is a locally compact Hausdorff space (due to Urysohn Lemma 7). But then, it is natural to ask
under which assumptions on Q C R" the vector space Cck(Q) does not reduce to the null vector. It
turns out that C*(Q) is never trivial because C2°(Q) C C¥(Q) and the space C2°(Q) is never trivial
as the next result shows.

A unital or unitary module is a module
over a unital ring in which the identity
element of the ring acts as the identity
on the module. A unital algebra A over
a field K is an algebra over K which is
unital as a ring
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61(y) 1k

R

o

-10 -5 1

Figure 6.6. Left. The function y € R—exp(—1/(1—y)). It is discontinuous at 1€ R. Right. The graph of
the function e;:y € R—exp(—1/(1 —¥))X( o ,1)(¥) used in the proof of Proposition 6.53.

6.53. Proposition. The function n: RY — K defined by

1 .
n(z) 3:eXP<—%>XB(I), that is n(z):= eXp(_17 |x\2) if |z|<1,
~ Il 0 if [o]>1,

where B is the open unit ball of RY and yp its characteristic function (here the convention is
that 0-00=0 on dB) is in C(RY).

PROOF. The trick to minimize the computational effort is to decompose 7 under the form n=e;0h,
with e1:y € R~ exp(—1/(1 - y))X( —o0 ,1y(y) and hiz € RY — |z|? € R. Note that

e1(x) ::{ SXp(_l/(l —y)) ii z; 1,

It is then clear that e; is continuous in R. It is also clear that 17 is continuous on RY and suppq n=B.

Next, since h is in C*°(R”) function (in fact, it is a polynomial), for 1 to be in C°°(RY) it is
sufficient that e; € C°°(R) because then the assertion follows from the chain rule. In that regard,
as h is of class C° in R\{1} we rely on a well-known corollary of de I'Hépital’s rule. Precisely, it
is simple to show, by induction, that for every k£ € N there exists a polynomial function Py: R — R,
such that for every y <1

Oher(y) = P 5 )er(v).

1—y
On the other hand, it is clear that 8§el(y) =0 for any y > 1 and any k € N. But then,

according to de I'Hopital’s, as e is continuous at y =1, for k=1, we infer that (9ye1)|,.—-)=

limyHrPl(ili)el(y) =0=(dye1)y.—(1+). Hence, e € C'(R). Proceeding by induction, one shows
that

. 1
(Byer))yi=y = ygﬁlpf@<1_y>€1(y) =0=(3yer)y=(1+)-

Therefore, e; € C*°(R). This concludes the proof. EENE

6.3.2. The space ﬂ}“{(ﬂ) with k € N, Q C RY open and K C Q compact

Let Q C RY be an open set, K € fq and k € N. We denote by @}%(Q) the locally convex space
(CE(Q), ) with 7 := 7§|CE(Q). Recall that 7§ is the topology of £%(Q) = (C*(Q),74). In other

1
10 y -6 -4 -2 1 y

Note that X(_oo,1)(|z|?) =1 if, and only
if, |z|2< 1.

The polynomial P will be of order 2k,
but this information is useless for our pur-
poses
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words, the space D}-(Q) is the vector subspace C%(Q) < C*(Q) endowed with the topology induced
by £%(Q) = (CH(Q). 7).

It follows, from (6.25), that a generalized sequence ( fy)rea in DE(Q) converges to f € DE(Q)
if, and only if, prc 1 (f — f)) :=SUD|«|<m SUPze i |[D* fa — D* f ()| converges to zero for every m < k.
This means that for every || <k the generalized sequence D* f converges uniformly to D*f on the
compact set K.

6.54. Proposition. The space ‘D}%(Q) is a Frechét space.

ProoOF. Note that the notion of first-countable space and Hasusdorff separated space are heredi-
tary, that is, inherited by topological subspaces. Since £*(Q) is a Frechét space, it remains to show
that D}“{(Q) is complete. For that, it is sufficient to prove that C{(Q) is closed in the complete
space €¥(Q). To this end, consider a sequence ( f,,),en in C(Q) converging, in €¥(Q), towards an
element f € C*(Q). If 2o ¢ K then f,(z¢) =0 for every n € N and therefore f(x()=0. Hence, the
domain of nullity Ug(f) of f is such that Ug(f) 2 Q\K, that is suppaf C K. EEEE

6.3.3. The space D*¥(Q) with k € N, Q C R open

Let Q CRY be an open set, k € N. In Definition 6.51 we have seen that C*(Q)= UjGNC;k(j(Q), where
K;:=Q; and (Q;);en is a sequence of open and relatively compact sets, covering Q and such that,
for every j €N, Qj CQj1. Now, recall the compatibility result among induced topologies: in general,
if S is a topological space, and A C B C S, the subspace topology that A inherits from the subspace
B (endowed with the topology induced by S) is the same as the one it inherits from S. Therefore,

the following statement hold:
i. For every j €N one has C[k(j(Q) N C;’%jﬂ(Q) and moreover C¥(Q) = UJENC[I%j(Q).

i1. The topology of D}%J,(Q) = (C[k(j(Q), T;’?j) coincides with the topology induced on C[k(j(Q) by
9}%_“({2) = (C[k(jH(Q), T]]gj+1), because both of them are inherited by €%(Q).

J

But this is the general setting of a strict inductive limit of Frechét spaces (cf. Section 20).

6.55. Definition. The natural topology on Cf(Q) is, by definition, the topology 7 strict inductive
limit of the sequence of Fréchet spaces (D}%(Q))jew = (C;k(j(Q), 7}2].) jen. When endowed with its

natural topology, the LF space (C¥(Q), ') is denoted by the symbol D*(Q).

According to Proposition 5.15, the topology of Df(j(Q) coincides with the topology induced
on C’;]}].(Q) by D¥(Q). Moreover, since every compact set K € fq is included in some K, of (K;:=
Q;)jen, the following result holds.

6.56. Proposition. For any K € Rq the topology of DQ(Q) coincides with the topology induced on
CE(Q) by D*(Q).

ProOF. For any compact set K € g we have that

= 18| CE(Q).

The domain of nullity is defined in Defi-
nition 6.15
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Therefore, if Kj, O K we have that C#(Q) C C;k(j*(Q) and Tfléj* = Tg%]C[]%j*(Q). Therefore, by the
compatibility result among induced topologies, 7/ = T}?}.JC}“((Q). Eventually, by Proposition 5.15,
the topology of @}%(Q) coincides with the topology induced on C’;k(j(Q) by D*(Q). Hence, 7 =
™ |CR(Q) =1, |CHQ). EmnE

6.57. Corollary. The LF topology of D*(Q) does not depend on the covering sequence (Q;);en-

PROOF. Let K;:=Q; and J;: =1}, where (Q;);en and (I});en are sequences of open and relatively
compact sets, covering Q and such that, for every j €N, Q; CQ;4; and E Cljyq. Let . denote
the LF topology induced on C*(Q) by (Qﬁj(ﬂ))jew, and denote by ofp the LF topology induced
on C¥(Q) by (@ﬁj(ﬂ)) jen. It is sufficient to show that the canonical injection

L (Cf(Q)v TIIEF) — (Cvk(Q)a O-I]iF)
is continuous. Because, after all, we can always switch the roles of ' and ofp.

To this end, we observe that as a consequence of Proposition 5.13 we get that ¢ is continuous
on (C¥(Q), ) if, and only if, for every compact K € Rq the restriction of ¢ to D (Q) is continuous
(cf. also Proposition 6.59). But the map

zeDE(Q)—ze(CHQ),0)
is continuous because on CII%(Q) the topologies induced by 7 and of coincide with the topology

of DI(Q). EmeE

6.3.4. Characterization of bounded subsets of D*(Q) and convergence in D*(Q)

As an immediate particularization of Dieudonné-Schwartz theorem (Theorem 5.19), more precisely
of Corollary 5.20 and Corollary 5.21, the following result holds.

6.58. Proposition. Let Q CR" be an open set, k € N. A subset B¥(Q) of D¥(Q) is bounded, if,
and only if, there exists a compact subset K € Rq such that B¥(Q) C DE(Q) and B*(Q) is bounded
in Di(Q). Namely:

(suppo ¢ CK Vo€ B¥Q)) and ( sup Pr.m(p) <oo Vmék).
pEBk(Q)

A sequence (¢n)nen of elements of DF(Q) converges in DF(Q) towards an element o € DF(Q),
if, and only if there exists a compact subset K € Rq such that {p, n}tnen C ‘D}%(Q) and ©n,— @
in Di(Q). Namely:

e suppq pn C K for every n € N and suppq ¢ C K;

o for every multi-index |o| <k the sequence (D*py,)nen uniformly converges to D*¢ in K.

6.3.5. Characterization of linear maps D*(Q) — Y with Y locally convex space

As usual, let Q C RY be an open set, k € N.
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6.59. Proposition. Let T be a linear map of D*(Q) into a locally convex space (in particular, a
linear form). The following three assertions are equivalent:

1. T'1s continuous.
1. 1 is sequentially continuous.

115. For every compact K in Q, the restriction of T' to 3}%(9) is (sequentially) continuous.

ProOF. The equivalence of . and . is a specialization of Proposition 5.18, which holds for LF
spaces. The equivalence of 7. and . is a particularization of Proposition 5.13 as soon as we note
that every compact subset K € fq is included in some K, of (K;:=Q;)jen. EENE

6.3.6. Order relations for the topology of D*(Q)

6.60. Proposition. For every k € N, the topology of DF(Q) is finer (stronger) than the topology
induced on CF(Q) by EF(Q). For every k,h €N, if h >k then the topology of D"(Q) is finer
(stronger) than the subspace topology induced on C!(Q) by DF(Q). Also, for every p e [1,00] the
topology of D*(Q) is finer (stronger) than the one induced by the Lebesgue spaces LP(RQ).

PROOF. Let us show that the canonical injection of D¥(Q) into €¥(Q) is continuous. According
to Proposition 6.59 it is sufficient to show that the injection of D}-(Q) into £¥(Q) is continuous for
every K € Rg. But this is trivial because the topology of D}-(Q) is the one induced by EF(Q) on
Cr(Q).

Similarly, the canonical injection of D"(Q) into D*(Q) is continuous. As before, it is sufficient
to show that the injection of D%(Q) into DF(Q) is sequentially continuous for every K € Rq. But
this is an easy consequence of Theorem 6.58.

In the same way, one realizes that the canonical injection of D*(Q) into LP(Q) is continuous
for every p € [1, c0]. EENE

6.3.7. Dense subspaces of D*(Q)

6.61. Theorem. Let k € N. The space C>°(Q), considered as a vector subspace of DF(Q), is dense
in DF(Q) = (CHQ), ). It follows that C*(Q) is dense in D*(Q) for any h,k € N.

6.3.8. Dense subspaces of E¥(Q)

6.62. Theorem. Let k € N. The space C°(Q), considered as a vector subspace of €¥(Q), is dense
in EF(Q) = (CK(Q),78). It follows that C(Q) is dense in E(Q) for any h,k € N.
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DuALIiTY

7.1 | Dual pairs

7.1.1. Duality pairing: non-degeneracy and orthogonality.

A dual pair is a triple (Y, X, (-, -)) consisting of two vector spaces ¥ and X, over the same field K,
and a bilinear map (y,z) €Y x X+ (y,x) € K such that the following non-degeneracy conditions
are satisfied:

VyeY\{0} (y,-) #(0,-) and VeeX\{0} (,z)#(,0). (7.1)

Note that, by bilinearity, the notation (0, -) (resp. (-, 0)) is just a shortcut to denote the null

. . . . If the vector spaces are finite dimensional
functional on X (resp. on Y). Equivalently, the bilinear form (-, -) satisfies the nondegeneracy the two conditions in (7.1) mean that the

bilinear form is non-degenerate.

condition if, and only if,

VyeY [{y,)=(0,") = y=0], (7.2)
VeeX [(hz)=(,0) = x=0|. (7.3)

We call (-, -) the duality pairing (on Y x X), and we say that the bilinear form (-, -) places the
vector spaces X and Y in duality.

7.1. Remark. Note that, although no symmetry assumption on (-, -) is imposed by the definition, the
notion of duality pair has an intrinsic symmetric character. By this we mean that if (-,-) puts X and
Y in duality, then the bilinear form on X x Y defined by (z,v)) := (y,z), puts Y and X in duality.
Therefore one can say that (-,-) places X and Y in duality or that it places Y and X in duality.

A further characterization of the nondegeneracy conditions is stated in the next result.

7.2. Proposition. Let Y and X be two vector spaces and (Y, X, (-,-)) a dual pair. The following
assertions hold:

i. If (y1,2)=(y2,z) for every x € X, then necessarily y1 = y2.
it. If (y,x1) =(y,xz2) for every y €Y, then necessarily 1= xa.

The previous two conditions are, taken together, equivalent to the non-degeneracy conditions,
although, taken individually, they are more often referred to as separating conditions.

131
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7.3. Remark. If we denote by Y* the algebraic dual of Y, then condition 7. says that the family
of linear forms = € X + (-, ) € Y* separates the points of Y. Similarly, if we denote by X* the
algebraic dual of X, then condition 4. says that the family of linear forms y € Y — (y, ) € X*
separates the points of X. Recall that a family of linear functional in Y* separated the points if
twhenever 1, # s there exists an element y* € Y* that recognize when v, 2 are different, i.e., such
that y*(y1) # y*(y2). The terminology is borrowed from the one adopted for seminorms because,
clearly, (|(-,2)|)zex (resp. (|[(y,-)|)yey) is a separating family of seminorms on Y (resp. on X).

7.4. Remark. For every y € Y the map (y,):z € X — (y,z) € K defines an element of the algebraic
dual X*. Therefore, if we identify the bilinear form (-, -) with the linear map

LiyeYw—(y,)eX*

then the nondegeneracy condition (7.2) is equivalent to the injectivity of L. Therefore, a duality pair
permits to identify Y to a subspace of X*. Similarly, the nondegeneracy condition (7.3) guarantees
tha the linear map

RxeX—(,z)eY*

is injective. Therefore, a duality pair allows indentifying X to a subspace of Y. In general, however,
the maps L and R are not algebraic isomorphisms due to the lack of surjectiveness (see Remark ...)

When Y = X*, ie., when Y is the algebraic dual of X, the bilinear form
(¥, 2) e X*x X = (¥, ) =2*(x) e K (7.4)
is referred to as the canonical duality pairing (or the natural pairing) on X. The map
L:x*e X — (2% ) X* (7.5)
is nothing but the identity map and, therefore, surjective. On the other hand, the map
R:xe X (z*, ) e X** (7.6)

is the canonical map (or the natural map) from X into X** which maps each point = € X to the
evaluation map at = defined by ev,: 2" € X*— (2%, 2) =2 (x) € K. Clearly, ev, € X**. We recall
that X** is the double (algebraic) dual space (also called algebraic bidual) of X. In Proposition 7.7
below we show that the canonical duality pairing sets X and X ™ in duality. In particular, the natural
map R in (7.6) defines a monomorphism of X into X**.

In general, however, the natural map R in (7.6) is not an algebraic isomorphism due to the
lack of surjectiveness. In fact, it is possible to show that

dim(X) < dim(X*) < dim(X**) < dim(X**) < ... (7.7)

with equality if, and only if, X is finite-dimensional. In other words, in infinite-dimensional spaces,
the duality operator strictly increases the cardinality of the bases. Therefore, there are no chances
to find an isomorphism between X and X**. By contrast, when X is finite-dimensional, we have
dim(X ) =dim(X**) and, therefore, X and X** are isomorphic. However, the existence of at least
an isomoprhism in the finite-dimensional setting does not mean that the injective map R in (7.6)
has to be among them. But this is indeed the case (the easy proof is omitted), i.e., if X is finite-
dimensional then the natural map (7.6) is also surjective.

Overall, if we agree to say that a vector space X is algebraically reflexive when the natural
map is an isomorphism, then we can condensate the previous considerations by saying that a vector

The dual of an infinite-dimensional space
has greater dimensionality (this being a
greater infinite cardinality) than the orig-
inal space has, and thus these cannot have
a basis with the same indexing set. How-
ever, a dual set of vectors exists, which
defines a subspace of the dual isomorphic
to the original space.
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space X is algebraically reflexive if, and only if, it is finite-dimensional.

7.5. Definition. We say that two elements y € Y and = € X are orthogonal when

(y,z) =0. (7.8)

We say that two sets, M C X and N CY, are orthogonal if any elements of M is orthogonal to
every element of N. In other words, M is orthogonal to N if, and only if, (y,z) =0 for every
(y,z) € N x M. In symbols:

NLM <= (y,z)=0 V(y,z)EN x M. (7.9)

If ACX theset At:={yecY = (y,x)=0 for any 2 € A} is called the orthogonal of A in Y and,
as it is easy to show, it is a vector subspace of Y:

AL QY VAep(X). (7.10)
Similarly, if B CY, the set BL:={x € X = (y,2) =0 for any y € B} is called the orthogonal of B
in X, and is a vector subspace of X:

BtdX VBecp(X). (7.11)

When N is a singleton, we simplify the notation {y} L M to y L M (and in a similar way must be
interpreted the notations N L z and y L ).

7.6. Remark. Note that, by the nondegeneracy conditions, we have that for any y € Y there holds
the following equivalence: y L X if, and only if, y =0. Similarly, for any y € Y there holds the
following equivalence: Y L x if, and only if, x =0.

7.1.2. Canonical dual pairs: duality via the algebraic and continuous dual spaces

Recall that, given a vector space X, the space X* denotes its algebraic dual, that is, the set of
all linear forms on X (with values in K). If X is a topological vector space, we denote by X’ the
continuous dual of X, that is, the set of all linear and continuous functionals on X (with values in K).

The main purpose of this section is to prove the following result.

7.7. Proposition. A vector space X together with its algebraic dual X* and the bilinear pointwise
evaluation map defined by

(fya):=f(z) foramy (zeX,feX"),
forms a dual pair.

Moreover, if X is a Hausdorff separated and locally convex (topological vector) space, then X
together with its continuous dual X' and the bilinear pointwise evaluation map forms a dual pair.

Here
(fyzy:=f(z) foramy (ze€X, feX').

Note that, the first condition in (7.1) is trivially satisfied when ¥ = X* (resp. when ¥ = X’)
because it is nothing but the definition of non-zero linear form on X (resp. functional on X’). On
the other hand, to show that the second condition in (7.1) is satisfied requires a proper argument.
That is why, before proving Proposition 7.7, we need to recall some basic facts from linear algebra.

Note the different use of the words «func-
tional» and «form». We say a linear form
when K is seen as a purely algebraic vector
space. We talk of linear functionals, when
K is endowed with its topological vector
space structure.
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7.8. Proposition. Let M be a subspace of a vector space X. A linear form fo: M — K can always be
extended to a linear form f: X — K, so that fy = fo. For example, if m: X — M us the algebraic
projection of X along M, then we can set

f(x) = fo(m(z)).

This is the so-called canonical extension of fo to X.

We now have the tools to prove that (X*, X, (-,-)) with (-,-) the (bilinear) pointwise evaluation
map, forms a dual pair.

PROOF. [of Proposition 7.7, the algebraic dual setting] We have to show that the second condition
in (7.1) holds. From Proposition 7.8, the following claim holds: if 0+ zp€ X is a nonzero vector,
then there exists a linear form f: X — K such that f(xo)=1.

Indeed, it is sufficient to consider the one-dimensional subspace M = {Axz¢: A € K} and then the canonical
extension to the full space of the linear form fo: M — K defined as fo(Axg) =\, that is, as the coordinate chart of M
induced by the basis (zo).

Therefore, the set of all linear forms on a vector space X separates the points of X, meaning
that if o€ X and f(x0) =0 for any f € X* then necessarily xo=0. It is common to refer to this
property by saying that the algebraic dual X ™ of a vector space X separates the points in X. EE=H

The proof of Proposition 7.7 in the locally convex setting requires more tools. We start by
reviewing some basic facts concerning the continuous dual, mainly the Hahn-Banach theorem. This
is the object of the next section where also the proof of Proposition 7.7 will be completed.

7.1.3. The Hahn-Banach theorem in purely algebraic vector spaces

Let us recall the classical algebraic form of the Hahn-Banach theorem.

7.9. Theorem. Assumptions: Let X be a vector space on K (K equals R or C), M QX a vector
subspace of X, and p a seminorm on X.

Claim: Every (algebraic) linear form ¢ on M such that |@|<p in M can be extended to a linear
form @ on X while preserving the constraint:

|o|<p in X.

Claim in symbols (* denotes the algebraic dual): for every ¢ € M*, satisfying the constraint
|| <Py there exists o € X* such that gy =¢ and |@|<p in X.

7.10. Remark. Note that, in order to use the general algebraic form of the Hahn-Banach theorem,
one needs, apriori, a seminorm p defined all over the space X (although the linear form we are
going to extend is defined just on a subspace). When X is a locally convex space, this bothering
assumption is (in some sense) given for free (cf. Theorem 7.11).

7.1.4. The Hahn-Banach theorem in a locally convex space

It is possible to prove that the topological dual X’ of a topological vector space X#{0} may consist
of the zero functional only (cf. Example K in HANS JARCHOW, Locally Convex Spaces, Teubner
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Stuttgart 1981, p. 123). On the other hand, if X is a Hausdorff separated locally convex space, then
X’ always contains sufficiently many elements for a meaningful duality theory.

7.11. Theorem. Assumptions: Let X be a locally convex (topological vector) space on K, M<X
a (topological vector) subspace of X, and f a continuous linear functional on V.

Claim: There exists a continuous linear functional f defined on X which extends f.
Claim in symbols: for every f € M/, there exists f € X' such that ﬁmE f.

Corollary: If X is also Hausdorff separated, then for every X>xzo+ 0 there exists a continuous
linear functional f on X such that f(zg)#0.

7.12. Remark. The corollary stated in Proposition 7.11 is almost trivial in a finite-dimensional
setting as any linear functional defined in a finite-dimensional and Hausdorff separated topological
vector space is continuous. Precisely, relying on Theorem 4.51, it is simple to prove that: if X is
a Hausdorff separated, finite-dimensional, topological vector space and Y a topological vector space
(not necessarily Hausdorff separated nor finite-dimensional), then any linear map from X into Y
18 continuous.

7.1.5. Dual pairs in locally convex spaces

When X is a locally convex space, it is sufficient to consider just its continuous dual space X'
(included in its algebraic dual X*) in order to separate the points of X. This is a consequence of
the Hahn-Banach theorem for Hausdorff separated locally convex spaces.

PROOF. |of Proposition 7.7, the continuous dual setting] It is nothing but an equivalent restatement
of the corollary in Proposition 7.11: if 20 € X and f(x¢) =0 for any f € X' then necessarily xo=0.
Thus, X’ separates the points of X. EETHE

The polar set

Let X be a topological vector space on K, X’ its continuous dual space, that is, the set of all linear
and continuous functionals on X. Let A be any non-empty subset of X.

7.13. Definition. We define the polar set of A as the subset of X’ given by

A°:= {x’eX’:z sup](x’,x)]él}. (7.15)
€A

Note that the polar set A° of a (non-empty) subset A always contains the null functional.

7.14. Remark. Note that, in general, the functional =’ € X'+>sup,eca [(2/, )| is not a seminorm
because the value sup,c |(z/, x)| can be infinite. Also, as already observed at the beginning of
Section 7.1.4, if X is just a topological vector space (not locally conver), it can happen that X’
reduces to the null functional. In this case, A°={0¢€ X'} for any A C X.

Also, note that if 2’ € A° then also —2’ € A°. More generally, as we are going to show, the polar set
of A is an absorbing, balanced, and convex set.

Therefore, also such that f(zo)=1.1If fis
S}I(C}; that f(zo)# 0, just redefine f(z):=

f(zo)®

Recall that the empty set is always
bounded (cf. remark 3.40). Also, recall
that the supremum in R of () is +oo.
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Figure 7.1. (Left) If 2’ € (pA)° then |p|z’ € A°. In particular, (—A)° = A°. (Right) If A is a vector
subspace of X then A° coincides with the orthogonal of A.

Immediate consequences of the definition are collected in the following result.

7.15. Proposition. The following properties depend only on the algebraic vector space structure of

X.

a) Let A, B be subsets of X and p+0, pe K. The following properties hold:

1
i. ACB= B°CA°; ii. (AUB)°=A°NB°; iii. (pA)O:mAO

b) If A is a vector subspace of X then A° coincides with the orthogonal of A, that is, with
the vector subspace of X' (cf. Figure 7.1)

At:={2x'eX':(z',x) =0 for every x€ A}.
¢) The polar set A° is always a convex and balanced subset of X'.

Note: Relation a).iii. means that for any z’' € X', if ' € (pA)° then |p|x’ € A°. In particular,
(—A)°= A° (cf. Figure 7.1).

The next result relies on the topological structure of X. This is a good moment to remind some
notation and definitions already presented in the previous chapters.

Remainder of Definition 1.50 on the gauge of a set: Let X be a vector space and A C X. The map pa: X — [0, +0o0]
defined, for any z € X, by pa(z) :=inf{a € R} =2 € aA} with R =]0, 400/, is called the gauge of A (or the Minkowski
functional induced by A). Here, we assume the usual convention inf () = +oo.

7.16. Proposition. Let X a topological vector space. If A is bounded (and non-empty) then A° is
absorbing. Moreover, the gauge pao of A° is a seminorm and has the expression

pac(z’) =pa(z’) :=sup [(z', x)|. (7.16)
€A

In other words, if A is bounded (and non-empty), then pao(z’):=inf{a € R} =2’ € aA°} is a
seminorm which coincides with the map

pa:z’ € X'—sup |(a', x)|.
€A

Note 7.17. Note that with a small abuse of notation, we denoted by ps the seminorm 2’ &

Note the subscript: pao is the gauge while
pa is the seminorm =’/ supg e a [(z/, )|
that, as we are going to show, coincides
with the gauge.
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X'—supzea | (2, 2)] and not the gauge associated with A.

PRrooOF. First, we prove that A° is absorbing. Let A be a bounded subset of X. Consider a
generic element z’ € X’. Since the image of a bounded set via z’ is still a bounded subset (cf.
Proposition 3.48), the subset of real numbers {|(z', z)|:x € A} is a bounded set. Thus, there
exists a > 0, depending on z’, such that sup,c |{(z/, 2)| <. Hence, 2’/ € «A°. As A° is balanced,
we conclude that A is absorbing.

Next, we are going to make use of Proposition 1.51 and of Corollary 1.53. Indeed, since A°
is balanced, convex and absorbing, the gauge p4o is a seminorm on X’ and although in general
Bo(pac) € A° C Be(pao), here we have A° = Be(pac) because

Be(pae) = {z'eX’zpae(a) <1}
= {¢'eX'zinf{acRi: 2'ead® } <1}
= {2/eX'zinf{la € R} :t supzea |[(2/,2)|<a } <1}
= {2'eX zsupyeal(z’s2)| <1}
= A°.
Hence, if we prove that

pa(a’) :=sup [(z', z)],
T€A
defines a seminorm on X', then obviously Be(pac) = Be(pa) and therefore, according to Corol-
lary 1.53, we get p4 =pae. Let us prove that this is indeed the case. That pa(z’) < oo it follows from
the fact that A is bounded (and non-empty). The circular homogenéity follows from the relation
[{(\z', )| =|\| [{2', 2)| and the well-known fact that sup (\f)= Asup f for any real-valued function
f and any A > 0. Finally, the additivity results from the triangular inequality

(21 + 23, )| < [(2, )| + (a2, 7))

and the fact that sup (f + g) <sup f +sup ¢g. This completes the proof. [ [ B |

7.18. Remark. In the proof, we also showed that, although in general Bs(ps) C A° C Be(pa), here we
have Be(pa) = A°.

Topologies on the dual space

Let X be a topological vector space, and G a filtered by inclusion family of bounded (non-empty)
subsets of X, i.e., a family of bounded subsets of X directed by the relation C. In other terms, &
is a family of bounded subsets of X such that for any pair (51, 52) of bounded subsets in & there
exists a bounded subset S € & such that S;U Sy CS.

Example 7.19. As the union of a finite number of bounded sets is bounded (cf. Proposition 3.44), the family & of
all bounded (and non empty) subsets of X is filtered by inclusion. Indeed for any pair (S1,52) of bounded subsets of
X, there exists S € G, such that S;US,=S.

Example 7.20. As any finite (cardinality) subset of X is bounded (cf. Proposition 3.44), the family & of all finite
subsets of X is a filtered-by-inclusion family of bounded subsets of X.

According to Proposition 7.16, if S is a bounded (and non-empty) subset (in particular an
element of &) then S° is absorbing, and the gauge pso of S° is a seminorm that has the expression
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pso=ps(z’) :=supes [(x’,x)|. Moreover, S° is the closed unit semiball Be(ps) of ps. This justifies
the following definition.

7.21. Definition. We call G-topology on X’ the locally convex topology defined by taking the family
(ps)ses as a basis of (continuous) seminorms. In other words, the G-topology on X' is the topology
defined by considering

Be:={pS°:S€6,p>0}={pBe(ps):5€S,p>0}

as a filter base of neighborhoods of the origin of X’ (recall that the polar of a non empty set always
contains the null functional).

7.22. Remark. Observe that (cf. Proposition 7.15) for any p >0

pS°=(p~19)° = {x’efx,"::sup](m’,p1x>\<1}={m’€fXI’::sup\(m’,x>\<p}.

zeS z€eS

Hence
Be={z"€ X' =ps(2') < p}(),5)er+x &

Also, note that G°={S5°:: S € G} is a filter base because S O S;U S, implies (cf. Proposition 7.15)
that S°C (51U S2)°= 57N S5. Moreover, (ps)see is a filtering family of seminorms because S O
S1U Sy implies psi=ps, V ps,-

The straightforward consequences of the definition are collected in the following result.

7.23. Proposition. Let X be a topological vector space. The following assertions hold:
a) The G-topology on X' is (Hausdorff) separated when & covers the whole space X.

b) A generalized sequence () converges to x' € X' for the S-topology if, and only if, the
generalized sequence (x3) converges to x’ uniformly on every S € &.

PROOF. a) Since the G-topology on X’ is a locally convex topology defined by the basis of con-
tinuous seminorms (ps)see, it is sufficient to prove that for any x’# 0 there exists S € S such that

ps(x’) #0.
To this end, let ' # 0. This means, by the very definition, that (z/, z¢) # 0 for some z( € X.
Now, by hypothesis, the set & covers X, and therefore there exists Sp€ & such that xg€ Sy. But

then 0+ [(z', zo)| <ps,(z').

b) The property immediately follows from the relation

ps(xy) =sup|(zx, z)|
TeS

and from the characterization of convergence of generalized sequences in locally convex spaces
defined by a family of seminorms (cf. Proposition 4.34). EENE

7.3.1. Natural topologies on the dual space

7.24. Definition. We call weak dual topology (or weak-* topology) on X', the (locally convex) G-
topology on X’ defined by taking as filtered by inclusion family of (non-empty) bounded subsets of

Note the fundamental role played by polar
set. They permit to endow the contin-
uous dual of any topological vector space
— which is naturally endowed with just the
algebraic vector space structure of (point-
wise) addition of linear functionals and
multiplication of a linear functional by
a scalar — with a locally convez topology.

The compounds weak-* and strong-* are
to be read «weak star» and «strong star»
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X, the set & of all finite subsets of I. This topology is usually denoted by o (X', X). When X’ is
endowed with this topology, we denote it by X. ., and we say that the couple (X', o(X’, X)) is the
weak dual of X.

Note that V' is a neighborhood of the origin in X/ if, and only if, V' contains the polar of a (non-
empty) finite subset of X, that is, if there exist a finite subset {x1,...,2,,} CX and p € R" such that
V 2 {z'e Xz supien,, [{(z's z:)| < p}-

7.25. Definition. We call strong dual topology (or strong-* topology) on X’ the (locally convex) &-
topology on X’ defined by taking as filtered by inclusion family of (non-empty) bounded subsets of
X, the set G consisting of all nonempy and bounded subsets of X. This topology is usually denoted
by b(X’,X). When X’ is endowed with this topology, we denote it by X;, and we say that the couple
(X', b(X’, X)) is the strong dual of X.

Note that V' is a neighborhood of the origin in X} if, and only if, V' contains the polar of a (non-
empty) bounded subset of X, that is if there exist a bounded subset S C X and p € R" such that
V2 {a' €X' supses|(a, 7)< p-

The next proposition collects some consequences of the definition.

7.26. Proposition. Let X be a topological vector space. The following assertions hold:
i. Both the weak-* and the strong-* topologies are (Hausdorff) separated.

ii. A generalized sequence (x\)rcp converges to x' € X' for the weak-* topology if, and only if,
it converges pointwise, that is for every x € X, the generalized sequence (of real numbers)
({z5,7))ren converges to {x',x).

111. A generalized sequence (13)rcn in X' converges to 2’ € X' for the strong-* topology if, and
only if, it converges to x' uniformly on every non-empty bounded subset of X, that is, if

sup [{zA —z/y2)| =0
z€S

for every bounded (and non-empty) subset S of X.

1. The strong-* topology is finer (stronger) than the weak-+ topology.

PROOF. Statement <. follows from Proposition 7.23.a). Statements #i. and #ii. follow from Propo-
sition 7.23.b). Statement 7v. is a consequence of . and . EEEE

The transpose operator

Notation. Given two sets X, Y, we denote by .% (X,Y) the set of all maps from X into V. If X,
Y are vector spaces, we denote by L(X,Y") the vector space of all linear maps from X into Y. If
X, Y are topological vector spaces, we denote by .Z (X,Y) the set of linear and continuous maps
from X into Y.

7.27. Definition. Let X, Y be topological vector spaces and X', Y’ their continuous dual spaces. Let
f:X—Y be a linear and continuous map: f € .Z (X, Y). We call transpose (map) of f the map
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fle.Z(Y, X' defined by
veyY — f1(y):=yofecX' foranyy' cy’.

The map y'o f € X2 € X—»y'(f(2)) €R is called the linear pull-back of 3’ through f.

7.28. Remark. Think about why for any given f €.Z (X,Y) one has f' €.7(Y’, X’). Indeed, given
f, its transpose f ' is the map

yeY X' fT(y) == ee X (fT(y),z):= (¥, f@)) €R .

The fact that the map 2 € X — (f " (y'),z) := (y/, f(x)) €R is linear and continuous, i.e., that f'
has X’ as codomain, follows from the fact that f'(y’):=y’o f is the composition of two linear and

continuous maps: X 4]; Y LR

Note that, by definition,

(FTy) @)=y, f(2)) VeeX, Vy'ey.

Summarizing, if f€.Z(X,Y) then [T €.7(Y’, X’). Up to now, we only know the domain and
codomain of the transpose of f. But we still don’t know if given f, its transpose is linear and/or

continuous.

Figure 7.2. Given f€.Z(X,Y), we call transpose of f the map f' defined by f'(y’):=y’o f for any
y' ey

7.4.1. Algebraic properties of the transpose operator

Before proving some (mainly purely) algebraic properties of the transpose operator, let us think
about the concept we have introduced. The notion of transposition gives rise to three maps:

1. Given f€.Z(X,Y), for every 3’ €Y’ the transpose map f' defines the linear functional
fT(y') defined in X’ and which acts as follows

(T, z) =y f(x)) VreX.

The linear functional f'(y’) is called the linear pull-back of 3’ through f.

2. Given fe Z(X,Y), we can consider the map (which we are going to prove to be linear)
fleZz(Y,X') from Y’ to X’ which gives rise to the duality identity

(fT),2) =y, f(z)) VeeX, Vy'eY.

The map f' is called the transpose map of f. The transpose map of f associates to every
linear and continuous functional y € Y’ its linear pull-back through f.
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3. The transposition operator ": f — f ' is a map from .Z (X, Y) to .% (Y’,X’) and satisfies the
relation

(fTW)s2)=(y' fl2)) VfeZ(X.Y), Vy'eY VeeX.

Concerning these three maps we have the following result.

7.29. Proposition. Let X, Y be topological vector spaces and X',Y’ their continuous dual spaces.
Let f€ 2 (X,Y) and ' € .F (Y, X') be the transpose of f. The following assertions hold:

i. The map ':Y' =X’ is linear. In other words, the transpose map of any linear and con-
tinuous map is linear. In symbols: f' € L(Y', X').

1. If joc and jx are, respectively, the identity maps in X and X', then

(jx) " = jocr-
iii. If f1, fo€ Z(X,Y) and A1, o €K, then (A\ifi+ Xafo) T =Aifi' + N\ofs . In other words,
the transposition operator is linear: '€L(Z (X,Y), L(Y’,X)).

w. Let X,Y,2Z be three topological vector spaces and let f € £ (X,Y) and g€ £ (Y,Z). We
then have

(gof)T=fTog".

7.30. Remark. Note that in i. we just stated that f':Y’—X’ is linear; no assertion has been made
about the contintity of f'. Indeed, in general, the contintity of the transpose of f depends on the
topologies of X and Y. The contintity of f' is guaranteed when (cf. Proposition 7.35) both Y’ and
X' are endowed with the weak dual topology (and in this case f' €.Z(Y.,X))) or when Y’ and
X' are endowed with the strong dual topology (and in this case f' €% (Y}, X})).

PROOF. 1. For every yi, y5 €Y’ and any A\, \» € K one has

FTrOuyi+Xy2) = (Aayi+Aayz) o f

Ai(yio f)+Aa(yz0 f)

Af (1) + A2 f T (y5)-

1. It is trivial, but let us prove this to practice. The identity map j: X—X has for transpose the
identity map (jx)": X'—=X’. Indeed

(jox) "(a”) =2’ 0 jox =2’ = joc:(2”),
The arbitrariness of ' € X' proves the assertion.

wee. If fy, fze.ﬁf(x,y) and A, A2 € K, then

Afitdefo) T (y) = v o(Mfi+Aefo)
= Ao (f1)+Ay(f2)
= NS W)+ hefs (y).
The arbitrariness of y’' €Y’ proves the assertion.

iv. First note that go f €. (X,Z) and ¢g' (/) =2"0g€Y’. Hence,
(9o f)T(z") = #'o(gof)
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The arbitrariness of 2’/ € Z' proves the assertion. EEEE

7.4.1.1. Relations between the kernel of f and the range of f'.

7.31. Proposition. For any linear and continuous map f € 2L (X,Y), the kernel of the linear map
' coincides with the orthogonal of the image space of f. In other words:

ker (f7) = (Im £)° = (Im ) Vf € 2 (X, Y).

7.32. Remark. The proof relies on Proposition 7.15.a). Let us recall the result. If A is a vector
subspace of X then A° coincides with the orthogonal of A, id est, with the subspace A':={z'¢
X' (2/yx) =0 for every x € A}.

ProOF. The key point is that Im f = f(X) is a vector subspace of Y. Therefore, due to Proposi-
tion 7.15.0),0ne has

Ker(f1) = {y'€Y = fT(y)=0}

= {yeYu(fT(y),z)=0 for all z € X}
= {yeY = (y, f(x))=0 for all z € X}
= {yeYu:(y,y)=0 forall ye f(X)}
= f(0)*
= (Im f)°.
This concludes the proof. EENE

7.33. Corollary. (On the Injectivity of the transpose of f) Let X, Y be topological vector spaces
and X',Y’ their continuous dual spaces. Let f € .2 (X,Y) and f be the transpose of f. If the
image space f(X) is dense in Y (in particular, if f is surjective) then the transpose f':Y'—X'
of f is injective.

7.34. Remark. The injectivity of f' means that for any 1, y5 €Y/, if (y{, f(z)) = (v5, f(x)) for any
2 €X then y| = 5.

PROOF. Step 1. It is sufficient to prove that if M is a dense linear subspace of Y, then M°=M+={0}.
Indeed, after that, setting M=Im f, we can infer that

ker(f")=(Im f)°= {0},

i.e., that f is injective. Therefore, let us show that if M is a dense linear subspace of Y, then
M°=M~+={0}. Let y' € M°. Then, (y’,m) =0 for every m € M (cf. Proposition 7.15.b)). Since
y’ is a continuous and linear functional from Y into K and since the topology of K is (Hausdorff)
separated, the principle of extension of the identities shows that (y/, ) =0 for every y € M =Y.
Hence M°=M"'={y' €Y’ (3, y) =0 for every y €Y} ={0}. This completes the proof. HE=E
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7.4.2. Some topological property of the Transposed map

7.35. Proposition. (Continuity of the transpose map) Let X, Y be topological vector spaces and
X', Y’ their continuous dual spaces. Let f€.Z (X, Y) and f' be the transpose of f. We already
observed that ' is linear. In addition, f' is continuous in both of the following two cases:

o When Y, X' are endowed with the weak dual topology:f' € % (Y., X.).

o When Y, X' are endowed with the strong dual topology: ' €.Z (Y;,X}).

7.36. Remark. Of course, since o(X’, X) and (Y, Y) are (respectively) coarser then b(X’, X) and
b(Y’,Y), and the continuity is preserved by coarsening the topology of the codomain and/or by
refining the topology of the domain, we also have

FreZ (Y, X))
Summarizing, we have that f' €. Z (Y., X )NZL(Y,, X)L (Y,,X}).

PROOF.

[FT €2 (Y.,X])| Let both X’ and Y’ be endowed with their weak dual topologies. We have
to show that for any generalized sequence (y3)rea in Y, the following implication holds:

(y)/\)/\eA%O in‘dé = (fT(y)/\)),\gA%O inx;.

Let (y4)ren be a generalized sequence converging to zero in Y.. Then, for any x € X, the gen-
eralized sequence ({13, f(2)))rea converges to zero (cf. Proposition 7.26). It follows that the general-
ized sequence ((f'(y4),))rea converges to zero, and this shows that the generalized sequence
(f"(34))ren converges to zero in X..

[fT €2 (Y),X;)] Let both X’ and Y’ be endowed with their strong dual topologies. Let A
be a bounded subset of X, and let B = f(A) the image of A under f. Since f is continuous and
homogeneous, B is a bounded subset of Y (cf. Proposition 3.48). Thus

pae(fT(y) = sup [(fT(h), )]

r€EA

= sup [{y5, f(2))]
T€EA

= sup [(yx, y)|
yeB

/
= ppe(y).
Proposition 4.37 shows the contintity of f'.
Recall Proposition 4.37: Let X and Y be two locally convex spaces and T a linear map from X into Y. Assume
that B is a basis of continuous seminorms on X and £ is a basis of continuous seminorms on Y. Then 7: X—Y is

continuous if, and only if, for every continuous seminorm q € Q, there exists a continuous seminorm p €‘P and a
constant ¢q >0 such that [Tz |; < ¢q |z], V2 € X. Note that here both ¢, and p depend on q but not on . HETH

7.4.3. Transposed of a topological isomorphism

Let us recall that given two topological vector spaces X, Y, we say that f€.Z (X,Y) is a topological
isomorphism if f is both an isomorphism of vector spaces and a homeomorphism of topological
spaces.
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7.37. Proposition. Let f be a topological isomorphism of X onto Y. Then the transpose map f'
is a topological isomorphism both of Y. onto X! and of Y onto X;. Moreover

fr=0hT=0N"h

i.e., the inverse of the transpose if equal to the transpose of the inverse.

PRroovr. To easy the notation, we set = f~!. By hypothesis, ¢ is linear and continuous of Y into
X. Therefore g' exists and moreover

fog=7Jjy, gof=jx.
Hence, thanks to Proposition 7.29 we get

jy = (jy)' =g of’ and jyx = (jx)' =fTog.

This shows that ¢" = (f7)~!, i.e., (f~) " =(f")~!. In particular, since (f~!)" is continuous, so is
(f7)~% Thus, f' is a topological isomorphism both of Y. on X/ and of Y; on X;. EEEE

7.5 | Canonical injection among dual spaces

7.38. Theorem. Let M:=(M, 1), X:=(X,7) be two topological vector spaces such that M—X
and X =Clx(M). In other words, suppose that

Cly (M) means that the closure of M is
taken in the topology of X

o MLX;
e the canonical injection of M into X, given by j: x € M—uz € X, is continuous;
e the injection j has a dense image.
Then the following two assertions hold:
i. The transpose j' of j continuously inject X' into M.

1. Bvery linear form w € M* which is continuous on (M, 1| M), that is, continuous with
respect to the subspace topology induced on M by X, is extendable (uniquely) to a contin-
uous linear functional u on X and j ' (u”) = u.

PROOF. The statement . follows from Corollary 7.33 and Proposition 7.35. Existence and uniqueness
of the extension 17 is a consequence of the principle of extension by continuity (cf. Theorem 3.36),
because K is Hausdorff separated and complete. Finally, since form the algebraic point of view
j coincides with the restriction operator, we have u=u# o j, and the last equality follows. HE=m

7.39. Remark. Often, since the transpose j ' of j inject X’ into M/, one identifies X’ with a vector
subspace of M. The previous theorem than states not only that X’ <M’ but even

X' =M.
Moreover, a sufficient condition for an element on u € M’ to be extendable to an element of X’ is

that u is continuous on (M, 7| M), that is, continuous with respect to the subspace topology induced
on M by X.
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Example 7.40. Let Q be an open subset of R". Let us particularize the injection theorem to the case
M:=D(Q) and X:=K(Q). Clearly, C>*(Q) < C.(Q) and, moreover, the topology of D(Q2) = (C°(Q),
Tip) is finer than the subspace topology induced on C:°(Q) by K(Q) = (Ce(Q), 7Lr). Therefore,
the canonical injection j: D(Q) < K (Q) is continuous. Also, Theorem 6.61 shows that C(Q) =
F(CHQ)) is dense in K(Q). According to the injection theorem, the transpose map j' of j injects
X'(Q) into D’(Q) so that one can identify K’'(Q2) with a vector subspace of D’(Q2) and one can also
write K'(Q) 9 D'(Q) or even K'(Q) — D’(Q2). Moreover, a sufficient condition for a distribution
ue D'(Q) to be extendable to a Radon measure, is that u is continuous on (C°(Q), 7r.r| C°(Q)),
that is, continuous with respect to the subspace topology induced on C2°(Q2) by &K ().

7.41. Theorem. (Consistency) Let (M, X) and (N, Y) be two pairs of topological vector spaces
such that

M— X and Clx(M)=X,
N — Y and Cly(N)=Y.

We identify X' to a subspace of M’ and Y’ to a subspace of N':
X' — M,
Y N
Let f, g be linear and continuous maps from M to N and from X to Y:
i X—-Y, ¢M-—-N.
If g is the restriction of f to M, then f1:Y' =X’ is the restriction of gT: N'—=M' to Y'.
PROOF. Let us denote by j the canonical injection of M into X. Also, denote by % the canonical
injection of N into Y. Stating that ¢ is the restriction of f is equivalent to say ko g= foj. By

transposition, in agreement with Proposition 7.29.7v, we obtain that ¢' ok"=j"o f'. In terms of
commutative diagrams we have:

e ; B\ r z \
J g’
M—m X Me— X’
\_ J \A A
g f gr fr
N—2" 5y N ety
[ J _ J

Identifying X’ (resp. Y’) with a subspace of M’ (resp. N'), the relation g ok =T o f'
expresses that [ coincides with the restriction of ¢' to Y'. EETE

Recall that a Radon measure is, by defi-
nition, an element of K’(Q)
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8.1 | Distributions on open subsets of RY

Recall that D(Q) := (C°(Q), 7r) denotes the complete locally convex (topological vector) space
C2°(Q2) endowed with the topology 71r inductive limit of FRECHET spaces.

8.1. Definition. Let Q be an open subset (bounded or not) of RY, with N > 1. We call distribution
on Q every linear and continuous functional on D (). The space of distributions on Q is nothing
but the dual space of D(Q) and, therefore, it is denoted by D’(Q). In other words, by definition,

Continuous with respect to the topology
TLr of D(Q)

D(Q):=(D(Q))". (8.1)
Let T € D'(Q) and ¢ € D(Q). The value of T" at ¢ will be denoted by T'(¢) or (T, ). <

8.2. Remark. Other ways to denote the value of 71" at ¢ are

/ o(z)dT(z) and /‘T(x)cp(x) dz. (8.2)
Q Q

However, the previous symbols are more common when 7' M(Q):=%XK'(Q), i.e., when 7" is a Radon
measure on €.

Algebraic dual of C2°(Q2). The set D'(Q) can be structured as a vector space in the usual natural
way. For every T, 71, T, € D'(Q), p € D(Q) and X € C we set

(Ti+To, ) = (T, ) +(To, ¢)  and (AT, ) = X(T', ).
The natural algebraic structure on D’(Q) is the one induced by the algebraic dual (C2°(Q))*.

Topologies on D’(Q). The vector space D’(Q), being the continuous dual of a locally convex space,
can be naturally endowed with both the strong-dual topology and the weak-dual topology. Both
these topologies turn D’(Q) into a Hausdorff separated locally convex space. In principle, according
to the general notation introduced in Definition 7.24 and Definition 7.25, one has to denote by
D'(Q), and D’(Q),, respectively, the locally convex space of distributions endowed with the weak-
dual topology and with the strong-dual topology. However, the context will clarify under which
topology a specific result holds.

e The strong-dual topology (cf. Definition 7.25), corresponds to the uniform convergence over
bounded subsets of D(Q). More explicitly, from the characterization of bounded subsets
of D(Q) (ctf. Proposition 6.58 with k= o00), this means that a generalized sequence (a net)

147
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(Ty)ren converges to T e D’(Q), if, and only if, for any K € Rg and any bounded subset S
of Dk (Q) we have

ps(N—T)=sup |(T'— T}, ¢)| =0 inR.
pesS

Recall that, S is bounded in Dy (Q) if, and only if,
(supr 0 CK Vpe 5’) and (sup pr m(p)<oco Vme [N),
pesS

with pr m(@) = supja|<msupzex [0%¢|. Indeed, recall that D (Q) is a Frechét subspace of
E(Q) (cf. Proposition 6.54).

However, more often, we will endow D’(Q) with

e The weak-dual topology (cf. Definition 7.24), corresponds to the uniform convergence over
finite (in cardinality) subsets of D(Q). More explicitly, first, recall that (cf. Remark 7.22) the
weak-dual topology on D’(Q) is defined by the filtering family of seminorms {pg: D'(Q) —
Ri}ses, (D)) with 6,(D(Q)) consisting of all subsets of D () having finite cardinality
and ps(T) =supges (T, ¢)|. The family of seminorms {p,: D'(Q) = R, },cp(q) defined for
any 7€ D’(Q) by

po(T) =T’ )1,

is a basis of continuous seminorms for D’(Q),. Therefore, it generates the same locally
convex topology of {p,: D'(Q) — Ry}, cp (). Thus, a generalized sequence (a net) (7))rca
converges to T € D'(Q), for the weak-dual topology, if, and only if, for every ¢ € D(Q) the
real-valued generalized sequence

Po(D—=T))rer=|(T' =T, ¢)| =0 inR.

In other words, the weak-dual topology is nothing but the topology of (simple) pointwise
convergence on D(Q).

(@)

The following characterization holds.

8.3. Proposition. Let Q be an open subset of RY, and let T be a linear form on C°(Q), i.e., an
element of the algebraic dual (CZ°(Q))*. The following assertions are equivalent:

i. T is a distribution on Q. That is T is in the continuous dual D'(Q).
1. T is sequentially continuous on D(Q).

111. For every compact subset K of Q, the restriction of T' to Dy (Q) is (sequentially) contin-
uous on D (Q).

. For every compact subset K € Rq of Q there exists a positive constant cx and a nonnegative
integer mig € N such that p,(T) < cx Pr,mx(p) for every ¢ € CRF(Q). Here, cx and mi
may depend on K, but not on ¢. More explicitly, it must hold

(T, o) <ex sup <sup |D°‘gp(x)\> for all o € CP(Q) (8.3)

la|<mi \z€K
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Figure 8.1. In 1d the Dirac delta distribution at xo € R is schematically represented by an arrow based at
xo, of length one, and pointing upward. If A € C, the Dirac delta distribution \J,, at xp € R is schematically
represented by an arrow based at xg, of length |\|, and pointing in the same direction of A € C.

PRrRoOOF. The equivalence of 2.,72. and 22¢. follows from the more general Proposition 6.59 because
C is a locally convex space. The equivalence of #i:. and 2v. follows from Corollary 4.39 as soon as
one recalls that the topology of Dy () is defined by the family of seminorms (pr yn)men. HEEE

Example 8.4. (Trivial) Let Q C R" be an open set. The null functional
0:peC(Q)—0eC

is a distribution on €. This is trivial to show in a lot of different ways. If we want to use Proposi-
tion 8.3.7v., then we have to show that for every K € Rq there exist cx >0 and mx € N such that

T, p)|=0<ckx sup (sup \D“cp(x)|> for all p € CF°(Q). (8.4)
lo| <mp \zeK
Clearly, every cx >0, as well as every my € N, does the job. For example, we can set cx =1 and
my = 0. Note that these choices of cx and my are valid regardless of the compact subset K € Rq.
This is a rare circumstance. Instead, it is often the case that myg does not depend on K € Rq
although cx does. In this case, one says that the distribution is of finite order and, more precisely,
that the distribution has order less than or equal to mg (cf. Definition 8.8). Thus, the fact that one
can choose my =0 regardless of K tells us that the null functional is a distribution of order zero.

Example 8.5. (P. DIRAC) Let Q C RY be an open set and xo € Q. The linear form
Ozt € CP(Q2,C) = () € C

is a distribution on Q. Indeed, for any compact subset K € Rq there exists a positive constant cx:=1
and a nonnegative integer mg :=0 € N such that for all ¢ € CF°(Q,C)

[ (0205 ) | = 0(20)| < cx Py (0) = sup [o()].
rze K
Indeed, if zo¢ K then p,(0,,) =0, while if o€ K then |¢(z¢)| <sup,c i |¢(z)|. Note that both
cx and mg do not depend on K € Rg. This is a rare circumstance. Instead, it is often the case
that mx does not depend on K € Rq although cx does. In this case, one says that the distribution
is of finite order and, more precisely, that the distribution has order less than or equal to myx
(cf. Definition 8.8). Note that when myx =0 one can replace the sentence «of order less than or
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Figure 8.2. The Dirac comb, also known as an impulse train, sampling function, or as Shah function because
its «graph» resembles the shape of the Cyrillic letter sha «LUr») is an infinite series of Dirac distributions
spaced at intervals of T, for some given period T'.

equal zero» with the sentence «of order zero». Thus, the Dirac delta distribution is a distribution
of order zero.

The distribution 0., € D’(Q) is called the Dirac delta (distribution) concentrated at x¢, or
the Dirac measure concentrated at xo (see Example 8.22). If 0 € Q the Dirac delta at 0 is simply
denoted by ¢. Clearly, if A € C, then also A\d,, € D’(Q2) and we say that \d,, is the Dirac measure
concentrated at xg and of total mass \.

In 1d, the Dirac delta distribution at xp € R is usually schematically represented by an arrow
based at xq, of length one, and pointing upward. The height of the arrow is usually rescaled by
a factor |A\| € R to schematically represent the distribution \d,, with A € C (cf. Figure 8.1). In a
measure-theoretic context (cf. Example 8.22), the scalar A represents the total mass concentrated
at xg.

Example 8.6. (E. T. WHITTAKER, C. SHANNON) The Dirac comb, also known as an impulse train,
sampling function, or as Shah function because its «graph» resembles the shape of the Cyrillic
letter sha «LLl», is very popular for its applications to sampling and aliasing. Indeed, it is at the
heart of Whittaker—Shannon interpolation formula. Formally, the Dirac comb is an infinite series of
Dirac delta distributions spaced at equal distance 7" > 0 (called the period of the Dirac comb). The
definition of period of distribution and series of distributions will be given later on; for the purpose
of this example it is not necessary to handle this right now.

Given a positive period T'> 0, the Dirac comb L7 is the linear form on C°(R, C) defined by
W7: p € CF(R,C) — Z p(nT) eC. (8.5)
ne”z
Clearly, for every compact subset ' € Rg we have (with ZT'={z € R z=nT for some ne Z})
(Wr, @) <Y o) = Y [o(@)] <cx sup |o(@)] =k premac(),
nez e KNZT zEK

where cx :=#(K NZT) and mx =0. Note that cx really depends on K € fg while my =0 does
not. Therefore, L7 € D'(R) is a distribution of finite order (cf. Definition 8.8) and, more precisely,
a distribution of order zero.

Example 8.7. (MuLTIPOLES) Let Q C RY be an open set and xp € Q. For a multi-index g € NV
we consider the linear form 550: 0 € CX(Q, C) s Py(xg) € C. Tt is simple to show that &
distribution on Q. Indeed, for any compact subset K € Rq there exists a positive constant cx:=1

B .
o 1S
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and a nonnegative integer mg := [B| € N such that for all p € CF(Q,C)

(05 )= 0P (0)| < cxc prc mie(9) = sup sup 0% ()| (86)
|| <[B| z €K
Indeed, if 2o ¢ K then [(55 , p)| =0, while if € K then [0Po(™(z)| < ps p/(¢). Note that both
cx and my do not depend on K € Rq. In particular, since my does not depend on K € Rq, 55,0 is a
distribution of order less than or equal to [B.

The distribution 55 L,ED(Q),Be N, is called the B-order derivative of the delta (distribution)
at xo. In electromagnetism, such a type of distribution models the action of a magnetic multipole
located at x.

Distributions of finite order

8.8. Definition. Let k€ N (k # o0), we call distribution on Q of order less than or equal to &, any
continuous linear functional on the space D*(Q). The vector space of all distributions on Q having
order less or equal than k is nothing but the dual space of D*(Q) and it is, therefore, denoted by
(DF)(Q). In other words, by definition

(DH)'(Q) := (DH(Q))". (8.7)

When k=0, we say that (D")’(Q) is the space of distributions of order zero. Recall that, formally,
the symbols (D>°)'(Q2) and D’(Q) denote the same thing. <

It is important to stress that while it is true that D(Q) = NpcnD*(Q), it is not true that
D'(Q)=Upen(DF)(Q). Indeed, Uy, (D*)'(Q) is nothing but the set of distributions having finite
order and, in general, one has

Uien(DH)(Q2) S D'(Q). (8.8)

The inclusion is strict, as the next example shows. Any element of D'(Q)\ Upcn(D")'(Q) is referred
to as a distribution of infinite order.

Example 8.9. (TAYLOR-TYPE DISTRIBUTION) Consider the linear form

LL: ¢ € C°(R) — Z 0"™p(n) e C. (8.9)
neN
It is simple to show that Ll is a distribution on R. Indeed, for any compact subset K in R, there
exists a positive constant c¢x and a nonnegative integer my € N such that for all ¢ € CZ°(Q)

(L)< 3 10%0(n)] < cxcbreml9) = e sup sup [07%(). (8.10)
neNNK a<mg reK

Indeed, it is sufficient to set cx :=#(K NN) and myg =max {o € N::w € K NIN}. The previous
inequality shows that LUl € D’(R) is a distribution. However, my depends on K € fg, and we cannot
conclude that L is a distribution of finite order. We cannot conclude, from the previous argument,
that LLl has infinite order (because, maybe, an estimate different from the one we used tells us that
Ll has finite order), although our intuition goes in that direction. In fact, as we now prove, LLl has
infinite order. In this regard, we need the following observation.
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d%p;

Pj

a &W

> |

~1/2 1/2

Figure 8.3. For every j € N we define the function ¢;: 2 € R @;(z):=j~*+1/2p(jz) where ¢ is in Dy (R) C
D(R) with K :=[—1/2,1/2]. In the pitcure, we sketch the case k =1. Note that sup.er |0%p;(z)] — +00
when j— oo, i.e., the set {¢;};en is unbounded in D3(R).

Claim: For every k € N there exists a sequence (¢;)jen in Dr(R) CD(R) with K :=[-1/2,1/2],
such that

©0;—0in D¥(R) but [0*+1p;(0)| = +oo in R. (8.11)

In particular, (¢;);jen converges in D¥(R) but not in DFFL(R).

8.10. Remark. The construction in the proof allows generating sequences (¢;);en satisfying the
claim, from a quite arbitrary ¢ in Dy (R). Precisely, given any ¢ € Dy (R), if we know that
Okt 1p(0) # 0 then we can build a sequence (;)jen such that ¢; converges in D*(R) but not in
DF+1(R) because the modulus of its k-th order derivative in 0 explodes to infinity.

PRrROOF. Let ¢ be in Dy (R). For every j € N we define the function

i€ R—=pj(z):= jk+;gp(jx).
Since suppr ¢ € K =[—1/2,1/2], for a given j € N we have that ¢;(z) =0 whenever |z|> Q—IJ
Therefore
1 1 .
Suppr ¢; € Kj:= [2],2]} VjeN.

Note that K =K and (K);jen is decreasing:
K1 DKyD..0K;D....

Hence, suppr ¢; C K for every j e N. In fact, (¢;)jen is a sequence in Dy (R). But this implies
that, for every h € N, also the sequence (0"p;);jen of its k-th order derivatives is in Dy (R). A direct

computation shows that

1 ,
8h<ﬁj($) = mahéﬁ(ﬂ)' (8.12)

The previous relation (8.12) shows that if h <k the sequence (9"¢;);en uniformly converges to 0
in R. Indeed, if h <k then j*((k*h)ﬂ/m — 0 when j— oo and, therefore,

1 j—ro0
sup |0"p; ()] < JICEDE=Y |0"p(2)| ——0.

zeR

In particular, ;— 0 in D¥(R).
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On the other hand, if h=Fk + 1 then
|05+ 10;(0)| = V710" +1(0)]
and, therefore, if we choose ¢ such that 9*+1(0)+#0 then [0*F1p;(0)| — +oo when j— oo. Clearly,

this implies that sup,cr |0¥T1p;(z)| — +00 when j — 0o, because of

sup |05 ()| =7 sup |0 Lo (jo)| = VG105 TLp(0)].
re A

In particular, the set {¢;}jen is unbounded in D*1(R) due to Proposition 6.58. EENE
Note that, in the previous claim, the assumption that K is centered around the origin plays

no special role. Indeed, the following result holds.

8.11. Proposition. Let k € N. For every a € R there exists a sequence (¢;)jen in Doy k(R) CD(R)
with K:=[-1/2,1/2] and a+ K :=[a—1/2,a+1/2], such that

©0;— 0 in DFR) but 05*lp;(a) = +oo in R. (8.13)

After that, suppose that LUl has finite order £ € N. We consider the compact interval of R
defined by Kj:=(k+1)+ K=[(k+1)—1/2,(k+1)+1/2]. Note that
NNKy={k+1}. (8.14)
As LI has order less than or equal to k, there exists a constant ¢ > 0 such that

[{LU, )| < cx sup sup [0%(z)| (8.15)
akzeKy

for any ¢ € ‘Df(k([R). On the other hand, taking into account (8.14), for every ¢ € ‘Df(k([R) we have

(W) =S ) = 3 97(m) "= 0F (k4 1),

neN neNNKg

Hence, combining the previous relation with (8.15), we get that if LLl is a distribution of order less
than or equal to k, there holds

(LU, @) | = [0"F 1 p(k +1)| < ey sup sup |0%¢())
a<kzeKy

for every ¢ € @f(k([R). In particular,

(LU, )] = 0"+ pj(k +1)[ =0
for every sequence (¢;);jen — 0 in Df(k([R). But this cannot be possible. Just consider the sequence
(¢j)jen of Proposition 8.11 with a:=Fk + 1.

8.2.1. Injection of (D*)’(Q) into D’(Q)

8.12. Proposition. Let k,h € N, and k < h. There exists a continuous canonical injection of
(DM(Q) into (D")(Q). In particular, any distribution of order less or equal than k can be
identified with a distribution.

8.13. Remark. The existence of a continuous injection j' of (D*)/(Q) into (D)’ (Q) means that
§1(S)=j"(T) if and only if S =T with j'(S), ;' (T) € (D")(Q). Therefore (D*)'(Q) can be
identified with the subspace j ' ((D")(Q)) C (D" (Q).
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PROOF. For integers 0 < k < h < 0o one has C(Q) < C¥(Q). Moreover (cf. Proposition 6.60), the
topology of D(Q) = (C"(Q), %) is finer than the subspace topology induced on C/(Q) by D*(Q).
Therefore, the canonical injection j: D"(Q) < D*(Q) is continuous. But then, Theorem 6.61 shows
that C(Q) = j(C*(Q)) is dense in D¥(Q) and the proof follows from Theorem 7.38 concerning the
injection of dual spaces. More precisely: the transpose map j ' of j injects (D*)’(Q) into (D")"(Q);
moreover every linear form 7}, on C/*(Q), which is continuous on C*(Q) for the topology of D*(Q),
is extendable to a continuous linear form Th# on DF(Q) and jT(Th# ) =1Tj,. EENE

We have the following useful characterization of distributions of finite order.

8.14. Proposition. Let T be a linear form on C°(Q2). The following three assertions are equivalent:
t. The linear form T is identifiable to a distribution of order less than or equal to k.

ii. The linear form T is continuous on (C(Q), 7'g), i.e., on C(Q) endowed with the sub-
space topology induced by DF(Q).

111. For every compact subset K of Q, there exists a constant cx (depending only on the given
compact set K) such that

Po(T) =T, )| S ck pr k() Vo € Dr(Q).
Recall that px k() :=sup|e|<k SUPzek [0%p(z)|.

PRroOF. It is clear that 2. implies 2., because point ¢. means that there exists an extension T of
T to D*(Q) and such an extension is continuous in D*(Q), i.e., T € (D*)'(Q).

That 2. implies ¢. follows from Theorem 7.38 concerning the injection of dual spaces. More
precisely, the linear form 7 is, for the time being, defined just on C2°(Q2). Since CZ°(Q2) is dense in
D*(Q) and T, by hypothesis, is continuous on (C2°(Q), 1), there exists a unique extension of 7T’
to D*(Q) by the principle of extension by continuity (cf. Theorem 3.36).

Finally, the equivalence of #i. and 22¢. is a consequence of Proposition 6.59 as soon as we note
that if 7" is continuous on (C2°(Q), 7p) then (the unique extension of) 7" is continuous on DF(Q)
and therefore, from Proposition 6.59, we have that 7' is continuous on @f((ﬂ) for every compact
set K C Q. EETE

Radon Measures

In Definition 6.32 we defined Radon measures as the dual space of K(Q2) with Q a o-locally compact
Hausdorff space. Since every open subset Q C RY is a o-locally compact Hausdorff space, we can
identify (due to Proposition 8.14) the space M(Q) :=XK'(Q) with the set of distributions of order
less than or equal to zero on 2. In fact, in the theory of distributions, one usually gives the following
definition.

8.15. Definition. We call Radon measure on Q every distribution of order zero on £, i.e., any element

of (DP)(Q). »

According to the characterization given in Proposition 8.14, a linear form p on CZ°(Q) is
(identifiable with) a Radon measure, if for every compact K € Rq there exists a constant cy,
depending on K, such that [(u, )| < cxsuprex |@(x)| for every ¢ € Ky (Q2). The set of Radon
measures on  is, essentially, nothing but the dual of the locally convex space K(Q2) =D"(Q) and
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will be denoted by (D")'(Q) or by K'(Q) or by M(Q). For 1€ XK'(Q) and p € K(Q), the value of
1 in ¢ will be denoted by one of the following symbols

n(e), {1y p), /Qcpdu, A@(m) dp(z). (8.16)
For the sake of concreteness, we specialize Proposition 8.14 to the case of distributions of order zero.

8.16. Proposition. Let p be a linear form on C°(Q2). The following three assertions are equivalent:
i. The linear form y is (extendable to) a Radon measure on Q.

ti. The linear form p is continuous on (C:°(Q), T1p), i.e., when C°(Q) is endowed with the
subspace topology induced by IK(Q).

1. For every compact subset K of Q, there exists a constant cx (depending only on the given
compact set K) such that

po(T): =T, o) S cxpr0(p) Voo € D (Q).

Recall that px o(p) :=supzex |¢(x)|.

8.17. Definition. The weak star dual topology on K'(Q) is called the topology of vague convergence.
A generalized sequence {11y }rea vaguely converges to a measure p if, and only if, for every ¢ € K(Q)
the generalized numerical sequence {1y, @) converges to (i, ¢). =<

8.18. Remark. The vague topology on K'(Q) is finer than the one induced by the weak dual topology
of D’(Q2). Indeed the injection of K’'(Q2) into D’(Q) is continuous.

8.3.1. Positive Radon Measures

We now show that any positive linear form on C.(Q2,C) is a positive Radon measure. We start with
some definitions.

8.19. Definition. Let i be a radon measure on Q. We say that p is a real Radon measure if for
every ¢ € K(Q,C) such that I(¢) =0 we have I((u, ¢)) =0, i.e., if for every real-valued function
p e XK(Q,C), the number (1, p) is real. We say that y is positive if, for every ¢ € K(Q,C) which is
positive (possibly null at some or all point in Q) the value (u, ) is positive (or null). In symbols,
o is positive if, and only, if (i, ¢) >0 for every ¢ € C.(Q, R) such that ¢ >0 in Q. We say that
{1t is monotone if for every real-valued ¢, ¢ € K(Q, C), there holds that (u, p) < (u, 1) whenever
p< Y in Q. =

The notion of positive Radon measure is a particular case of the more general notion of positive
linear form on an ordered vector space. For example, one says that a linear form L on a (partially)
ordered vector space (V, <) is positive if L(v) >0 whenever v > 0. Since C.(Q, C) is (partially)
ordered by the relation ¢ < if, and only if, ¢, 1) are real-valued and p(x) < (x) for every x € Q,
the concept of positive Radon measure is an instance of the concept of positive linear form. Also
the concept of real Radon measure extends to (not necessarily continuous) linear form on K(Q,C).
For example, we say that s is a real linear form on C.(Q2, C) if for every ¢ € C.(2, C) such that
3(¢) =0 we have (i, ¢)) =0. We say that p is a monotone linear form on C,(Q2, C) if for every
0, € C(Q,C) we have (pu, p) < (1, 1) as soon as ¢ < 1 in Q.

The term «positive» in the context of
Radon measures is a synonym of «non-
negative», that is of >0 rather than >0.
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For any real linear form on C.(Q, C), the following properties hold.

8.20. Proposition. Let i be a real linear form on C.(Q,C). Then p is monotone, if and only if, p
is positive. Moreover, if is ju is monotone (or positive) then

VoeCe(Q,R)  [(1y @) < (15 |2])- (8.17)

It follows, that
Vo, €C(Q,C) |ol<y = [{u, )| <cr{p, ). (8.18)
with cx =1 if ¢ is real-valued and cx =2 if ¢ is complex-valued. Note that, instead, 1 is necessarily

real-valued.

PRrOOF. Let 1€ [C.(Q,C)]* be a real linear form. Assume that ;2 is monotone. Since 0 € C.(Q, R),
we have that if ¢ >0, then

(s ) 2 (p, 0) =0.
Conversely, let 11 be a positive linear form and assume that ¢ <. Then ¢ — ¢ >0 and, therefore,

0< (1, ¥ — ) =, ¥) — (1, ). Hence (p, ¥) =1, ¢).

Next, we prove (8.17). For that, we observe that since ¢ is real-valued, we have
—lel<p<|p| inQ

By monotonicity and linearity we infer that —(u, |o|) < (1, @) < {1, |¢@|), thatis [ (1, )| < (i, |©])-
This proves (8.17). Next, assume that ¢, 1) € C.(Q,C) and || <. We write p:=Rep + iS¢ and
note that, due to (8.17), we have

|<,u,, §R€<,9>| + |<,u,, %99>|
(8.17)

<
1
< <Ms|%e¢|>+<ﬂa|%@|>
< CK<,UJ7 1/)>

(s )|

The last equality following from the monotonicity of p and the assumed relation |¢| < . Indeed,
trivially, [Rep| <|¢| <9 and |S¢| <|p| < in Q. EENE

8.21. Proposition. Let p be a linear form on C.(Q,C), i.e., an element of the algebraic dual of
Ce(Q,C). If p is positive on C.(Q2,C) then u is continuous on K(Q, C). In other words, the set
of positive linear forms on C.(Q2,C) coincides with the set K'(Q,C) of positive Radon measures
on Q. In particular, every positive linear form on C.(Q,C) is a distribution of order zero.

PrOOF. Let K € Rq be a compact subset of Q. Let p € K (Q,C). Clearly,

lo(x)| <pxo(p) = SU£\¢($)| Va eqQ.
xre

Consider an Urysohn cut-off function %, i.e., a nonnegative function which is equal to 1 on K and
that belongs to (2, R). The existence of such a function is guaranteed by Urysohn’s separation
Lemma 7. We then have

lp(z)] < Y (@)pro(p) Vo eQ.

Indeed, the previous relations reduce to |¢(z)| < supk || in K and to supx |¢|Y(z) >0 in Q\ K
because of suppoy C K. But then, from (8.18), we infer that

<> ) < (e (s 90)) pic0(0)-
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Since (p, 1) depends only on K and pg ¢ is the norm defining the topology of K (2, C), the linear
form p is continuous on K (2, C). The arbitrariness of K € R concludes the proof of the continuity
of pon K(Q,C). EENE

Example 8.22. (DIRAC MEASURE) Let Q C RY be an open set and x¢ € Q. The Dirac delta concen-
trated at x(, defined by (cf. Example 8.5)
63:0: wEe OCOO(Qv C) = 90(‘7/0) S (C,

can be trivially extended to a linear form on C.(Q,C). As an element of the algebraic dual of
Ce(Q,C), 04, is positive. Therefore d,, is a positive Radon measure on Q.

Example 8.23. (DIRAC coMB) Given a period T > 0, the Dirac comb distribution LU, defined by
(cf. Example 8.6)

LUT:(,DEOCOO([R,(C)HZ o(nT) eC, (8.19)
ne”z

can be trivially extended to a linear form on C.(R,C). As an element of the algebraic dual of
Ce(R,C), W7 is positive. Therefore LL7 is a positive Radon measure on R.

8.3.2. Regular distributions

In this section, we show that if Q is an open subset of RY, then the elements of LIIOC(Q) can be
identified to a subspace of the space of distributions of order zero (a Radon measure): Li,.(Q) <
K'(Q). When an Li,,(Q) element is identified to a Radon measure, it is referred to as a regular
distribution. In other words, the space of regular distributions is nothing but the subspace of K'(Q)
consisting of those Radon measures that admit a L{,.(Q) representative (via a canonical injection),
in the precise sense specified by the following result.

8.24. Theorem. Let Q be an open subset of R and let f € Llloc(Q). The following assertions hold:

t. The linear form Ty on C.(Q) defined by

T o [ H@)ol@)do,
is a Radon measure on Q (a distribution of order zero).
1. If Ty is the null measure, then necessarily f =0 a.e. in 2.
Conditions 1. and 1. ensure that the map T" defined by
T: f€ L, (Q)— T eX'(Q)

is a (linear) injection of Li.(Q) into K'(Q). It is called the canonical injection of Li.(Q) into
X'(Q).

iii. The canonical injection of Li,.(Q) into K'(Q) is continuous.

8.25. Remark. Thanks to the previous theorem, we can identify any element f e Li .(Q) with the
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distribution 7y € K'(Q). Indeed, if fi, fo € L{,.(Q) and T}, = T},, then Tif, - ,) =0 and, therefore,
fi=fo a.e. in Q. Thus, f; and fo represent the same element in Li .(Q). We say that Ty is the
distribution (Radon measure) represented by f. Often, one uses the notation [f] to denote the
regular distribution associated with f & LIIOC(Q)v l.e., one writes

([f], ¢) /;Zf(x)go(x) dz.

Some times one uses the notation (f, ¢) as a replacement of the more correct ones (7%, ¢) and

([11 #)- <

8.26. Definition. Any Radon measure (distribution of order zero) which admits a representative in
Lio(Q) is called a regular distribution. In other words, a distribution 7' D’(Q) is called a regular
distribution if there exists an element f € Li,.(Q) such that 7' =Tj}.

For the proof of assertion 2. in Theorem 8.24, we need the smooth version of Urysohn’s
separation Lemma (cf. Lemma 7) that here we recall.

8.27. Lemma. (Urysohn, Smooth separation Lemma) Let (K, F) a compact-closed pair of RY.
If the pair is disjoint, i.e., if K N F =), then there exists a function 1) € C°(RY) having the
following three properties:

i. 0<(x) <1 for every x € RY;
2t. =0 on a neighborhood of F;
i1t. =1 on a neighborhood of K.

In particular, given an open set Q of RY and a compact subset K of Q, there exists a Urysohn
cut-off function ¢ € C°(Q), such that 0 < Y(x) <1 for every © €Q and ¥ =1 on a compact
neighborhood of K.

(@]

PROOF. (of Theorem 8.24) i. Let K € £q be a compact subset of Q. For any ¢ € Kx(Q) we have

ITH0)] < prc o) /K | (2)) da.

Therefore, for every K € g there exists a nonnegative constant cx := || f || 1(x) such that

ITr (o) < crprole) Vo€ Ki(Q).
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Figure 8.4. Let K € R be a compact subset of Q. Let e < dist(K, QC). We construct a sequence (;);en
of C°(Q) functions such that for every j€N, 0< ¢j(z)<1in Q, ¢;=1in K, and ;=0 in Q\K.,;, where
K.,; is the compact neighborhood of K of size €/j. Namely, K. ,;:={z e Qudist(z, K)<e/j}.

The arbitrariness of the compact set /' proves the continuity of 7y on K ().

ii. Let f € Li.(Q) be such that Jo f(x)p(x) dz =0 for all p € C(Q). We want to show that
necessarily f=0 a.e. in Q. We prove a stronger result, the so-called fundamental theorem of Calculus
of Variations. It states that if f & L{ (Q) is such that Jof(@)p(z)dz=0 for all ¢ € C°(Q) then
necessarily f =0 a.e. in Q%1. We give two possible arguments.

Proof 1 (via Urysohn’s separation Lemma and Lebesgue differentiation theorem). Let K € Rq
be a compact subset of Q. Let £ < dist(K,Q%). We consider the G5 approximation of K given by
(K./;)jen where K. /; is the compact neighborhood of K of size € /j. Namely (cf. Figure 8.4):

K. j={reQudist(z, K)<e/j}.

On such a decreasing approximation (K.,;)jen of K, we construct the sequence (1);)jen of CZ°(Q)
functions such that for every j €N

0<yYi(z) <1 inQ, ¢;=1inK, ¢;=0inQ\K,;.
Note that, since (K /;)jen is a decreasing sequence, we have
1[(21](5/.].277[)]‘21]( VjeN. (8.20)

The existence of such a family of functions is a consequence of the smooth Urysohn’s separation
Lemma 8.27. Note the following facts:

e When j— +00, the sequence 1x_,, — 1k pointwise in 2. Hence, by the sandwich lemma and
(8.20), we have (v;)jen — 1k pointwise in Q. Thus, (f1j)jen — flx pointwise a.e. in Q.

e By the uniform bound in (8.20), the sequence ( f1;);jen is dominated by the function | f|1x,
which is integrable because, by assumption, f € Li.(Q).

By Lebesgue dominated convergence theorem, we infer that

lim | (i) (x)da = / (f1x)(x) da. (8.21)

Jj— JQ Q

By hypothesis [, f(2) ¢(x) dz =0 for every j € N and, therefore, by (8.21), |[f||11(x)=0. The
arbitrariness of K ensures that || f||,1x)=0 for every K € fq. By Lebesgue differentiation theorem,

8.1. The result we are going to prove is stronger because we are going to infer that f =0 by testing the distribution T}

against elements in C2°(Q) rather than in the superset C.(Q).
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we conclude that f =0 a.e. in Q.

Proof 2 (via regularization by convolution and Lebesgue differentiation theorem). Let K € fg be
a compact subset of Q. Let ¢ < dist(K,Q%). We denote by g:= f - 1x. the extension of f to all of
RY which is equal to zero outside the compact neighborhood K. of K. We denote by (0j)jen a
regularizing sequence such that supp8; C B(e/j). Also, we denote by g;:= g * 0; the regularized of
g at resolution €/ j. By definition, one has

gj(m)[RNg(y) 0;(y —x)dy, (for every r € RV )

We observe that for every = € K the support of 7,0; = 6;((-) — 2) is contained in K + B(e) and,
therefore, in the compact neighborhood K. where one has g = f. It follows that

gj(x)= /Qf(y) 0j(y —x)dy, (forevery ze K ).
Since 7,0; € C2°(Q) when z € K (regardless of j € N) and by hypothesis (f, ¢) =0 for every
p e C(Q), we have

gi(x)=(f,70;) =0 (for every z €K ). (8.22)
On the other hand, by the regularization theorem, the regularized sequence (g;);cn — ¢ strongly in
LYRY). Whence ||g = g;[lL1(x) < |19 — 9i |1 &) — 0. But on K we have that || g — g; |1y = | 9 |l1(x)

because of (8.22) and, therefore, ||g|;1(x)=0 for every compact subset K of Q. By Lebesgue
differentiation theorem, we conclude that f=0 a.e. in Q.

iii. The injection of Li.(Q) into K'(Q) is manifestly continuous when the space K'(Q) is endowed
with the vague topology (cf. Definition 8.17). Indeed, for any ¢ € K(Q2) we have

Ty, 0)] < prco() A ()] da,

with /i the support of ¢. Since [ f||11(k) is one of the seminorms defining the topology of Lio(Q)
the assertion follows.

However, the canonical injection is continuous even when the space K’'(2) is endowed with
the strong-dual topology. Indeed let B a bounded subset of K (). According to Proposition 6.58,
there exists a compact subset /& of Q such that sup,cs pr () < co. Therefore

sup (T}, )| < ( suppK,o«o)) 1@l

peB peB

Since || f |11 (k) is one of the seminorms defining the topology of Li,o(Q) the assertion follows. mE=E

Restriction of a distribution, support of a distribution

Let Q be an open set of RY, U an open subset of Q, and k€ N. For any ¢ € Cf(U) the extension by
zero of ¢ to Q, here denoted by ¢ - xr, is in C¥(Q). The map j: ¢ € C¥(U) — ¢- xu € C(Q) is clearly
linear and injective. Moreover, its topological counterpart, referred to as the extension operator,

jip € DHU) = - xu € DH(Q),

is continuous. Indeed, if ¢, — 0 in DF(U), then there exists a compact set K CU such that
supp ¢, C K for every n €N, and px r(¢n) — 0. Therefore, also px r(vn - xr) =px k(n) — 0, and
since K is also a compact subset of , this implies the continuity of j.
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From the continuity of the extension operator j: ¢ € D*(U) — ¢ -y € D¥(Q) and the general
theory of transposition (cf. Proposition 7.35), it follows that the map

7T (DH(Q) = (DM (U),

which maps every distribution 7' € (D*)’(Q) to the (restricted) distribution 7'|¢; in (D*)’(U) defined
by

(T|uy @) =(T, j(p)) forevery € D*U) (8.23)

is (linear and) continuous. We call the distribution 7'|;€(D*)(U) the restriction to U of the
distribution 7. When it is clear from the context that ¢ € D¥(U), we simply write (T'|i7, ) = (T, ¢)
instead of (|7, p) = (T, j(¢)).

8.4.1. The Cauchy principal value distribution associated with the pseudofunction 1/
For every ¢ € D(R) we consider the limit

lim 22 4y (8.24)
=0 Jjz|>e ¥

In general, depending on o € D(R), the measurable function ¢(z) /2 can be in Li.(R) or not. This
is due to the strong singularity at the origin of the function =+ 1/x. Nevertheless, as we will show,
for every ¢ € D(R) the limit in (8.24) exists. The idea to handle this kind of strong singularities was
introduced by Cauchy in his Mémoire sur les intégrales définies. Although the measurable function
x+1/2 is not in Li,(R), it belongs to Li.(R\ {0}). In applications, it is quite common to deal
with distributions originating from these kinds of functions, and indeed they have a name.

8.28. Definition. Let Q be an open subset of RY. A measurable function f:Q — C is called a
pseudofunction if there exists 2o € Q such that f € L .(Q\{zo}) although f ¢ L .(Q). =

To show that (8.24) defines a distribution, we use a first-order Taylor formula with the remainder
that, for completeness, we prove below. Recall that a subset S of RY is said to be star-shaped
with respect to a point zoc RY if for every = € S the line segment [0, z] from zy to z lies in
S. If S is star-shaped with respect to xg, one says that z( is a vantage point of S.

8.29. Theorem. (Brook Taylor (1685-1731)) Let ¢» € C*(U) (with 1 <k < 00) be a function defined
in the closure of a relatively compact open set RY. Assume that U is star-shaped with respect to
a point o€ U. Then, there exists a vector-valued function g, € CF=1(U,RY), depending on the
vantage point xg, such that

Y(x) =1P(x0) + gzo() - (x —20) and  gz,(z0) = Vip(z0). (8.25)
Moreover,
Sup |gao ()| < sup [Vi(z)]. (8.26)
zelU zeU

Note that, in general, the vector-valued function g, coincides with V1 only at .

PRroOOF. Since U is star-shaped with respect to x, for any = € U the function

t€[0,1] > (2o +t(z — x0))

Cauchy, Augustin-Louis. Mémoire sur
les intégrales définies. Mém. Acad. Sci.
Paris 1.82 (1827)
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is well defined. Moreover, by the fundamental theorem of calculus we have
P(x) = P(wo)+ </01V¢($0 +t(x — z0)) dt) (x —w0) =1(20) + Gao(@) - (T — 30),
with
gazo(T) :zAlvw(xQth(xxo)) dt. (8.27)

From (8.27) we infer that |g,,(x)| <supy |V| from which (8.26) follows at once. EENE

Let us elaborate on the previous limit (8.24). Consider a generic test function ¢ € D(Q) and set
K:=suppr . Take a compact interval K, :=[—a,a| with a sufficiently large to contain the support
of . Note that K, is symmetric with respect to the origin. Also, K, is star-shaped with respect
to the origin of R and, moreover, since K C K, we have

[ Dy o [ ey,
le|>e T {e<|z|<a} *

Note that, in general, it is not the case that K :=suppr ¢ is star-shaped because it can be the union

of two disjoint intervals. We now use of Taylor’s theorem (cf. Theorem 8.29). Precisely, for any

7€ K, we can write ¢ (x) = (0) + go(w)a with go(0) = '(0) and supgeges |90(x)| <sup yege [¢'(2).
Therefore, for ¢ sufficiently small we have

lim Mdur: = lim </ @dm—i—/ go(z) dm) (8.28)
e=0 Jiz|>e T e—0 {e<|z|<a} ¥ {e<|z|<a}
= /go(m)dm. (8.29)
K,

Indeed, the first integral in (8.28) is zero because the function 1/z is odd. Overall, the map

<vp;, > e D(Q)+— lim () dz (8.30)

e=0 Jiz|>e T

is well defined and linear. Moreover, since UK go(z) dx| <|Kalp g 1(¢), from (8.29) we infer that

‘<Vpia'>‘ <erp g (), (8.31)

for any ¢ € D (R), with the constant cx := |K,| = 2a depending on K only. Thus, the linear
functional Vpé is continuous on every Dy (R), i.e., continuous on D(R). By the arbitrariness of
K € Rq, we get that Vp% is a distribution on R of order less than or equal to one. It is called the
Cauchy principal value of 1 /. By definition,

<vp1, gp> = lim/ () dzx.
X e=0Jjz[>e ¥

After that, let us denote by U : =R\ {0} the real line pointed at the origin. The function z+1/x
is locally integrable on U and, therefore, it defines a regular distribution [1/x]; on U. It is simple
to show that the restriction of vp(1/x) to U coincides with [1/z]y. Note that [1 /x|y is a Radon
measure on U while the extension vp(1/x) (which is just one of the possible extensions) is not a

Radon measure on R. Indeed, while estimate (8.31) only proves that vp(1/x) is a distribution of
order less than or equal to 1, i.e., an element of Vpé € (DYHY(Q), with a simple argument one can
show that it cannot be of order zero.
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8.4.2. Domain of nullity of a distribution

The definition of domain of nullity of a distribution mimics the one given for continuous functions
in Definition 6.15.

8.30. Definition. Let Q be an open subset of RY. We say that a distribution 7'€ D’(Q) is null on
the open subset U C Q if its restriction to U is null. In other words, 7" is null on U if (cf. (8.23))

(T|uyp)=0 forall pecD(U).

We then call domain of nullity of 7' D’(Q2), and we denote it by Uq(T'), the biggest open subset
of Q on which 7" is null (biggest with respect to the set-inclusion order relation). If the restriction
of T' to any open subset of U is never identically zero, we set Ug(T') = (). <

8.31. Remark. (ON THE EXISTENCE OF THE DOMAIN OF NULLITY) Note that, in principle, the
definition of domain of nullity could not be well-posed. Indeed, if we denote by 7 the family of open
subsets of Q, then, formally, we defined Uq(T') as

Uq(T) ::mCaX{U eru(T,p)=0YpeDU)}

with the understanding (cf. (8.23)) that (T, @) = (T'|v, ) =(T', j(v)). However, it is not clear if
such a maximum exits®? unless one proves that if 7" is null on every element of a family of open
sets, then 7" is also null on their union. In other words, do not know yet if from the fact that 7"|;,=0
for every open set of a family (Uy)xea it follows that 7'|y=0 with U :=UycpUx. The affirmative
answer to this question is the object of the localization principle below.

8.32. Remark. Let Q C R" be an open subset, and let ¢ € C°(Q). If g€ C°°(Q) then the set of
points where ¢ - ¢ is different from is included in suppq ¢ as well as in suppq g. Therefore,

suppa (¢ g) Csuppo ¢ Nsuppa g Ve € CF(Q),Vge C®(Q).

Now, since suppq ¢ is closed in Q, and suppgq ¢ is a compact subset of Q, it follows that suppg ¢ N
suppq ¢ is compact, and this implies that also suppg(y - ¢g) is compact (being a closed subset of a
compact subset). In particular, ¢ - g € CZ°(Q) and suppq(y- g) C suppq g.

After that, suppose that (gx)xea is a family of functions in C'°°(Q) such that suppgq gx C Uy, with
(Ux)ren a family of open subsets of Q. By the previous reasoning, we have that for every A € A the
function ¢ - gy € C2°(Uy). In particular, suppq(y- ¢)) is compact and included in U.

Note that, what we just stated also holds if we assume, more generally, that Q is a Hausdorff
separated topological space, ¢ € C.(Q) and gy € C'(Q) with g, having support (not necessarily
compact in Q) contained in the open subset Uy C Q.

8.33. Lemma. (LOCALIZATION PRINCIPLE, 1) Let Q be an open subset of RY, (U\)xen a family
of open subsets of Q. If the distribution T on Q is null on every open subset UyCQ (A€ A), then
T is null on their union U :=UycAU,.

Proor. We have to show that (7', ¢) =0 for every ¢ € D(U). For that, let (gy)rea be a C
partition of unity of U subordinated to the open cover (Uy)rca. The partition of unity (gx)rea
induces a Dieudonné decomposition of every ¢ € D(U). Precisely, for any A € A we set ¢) :=

8.2. For example, if Q is an open set of RY, then there does not exist the maximum closed set contained in Q. While if K is
a closed subset of RY, then there exist the maximum open set contained in K. This is because while the property of being an

open set is preserved by arbitrary unions, this is not the case for closed sets.
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grp so that suppq gy is compact and included in Uy Nsuppy ¢ (cf. Remark 8.32). Next, recall
(cf. Theorem 7) that for any compact subset K € R there exist n(K) € N and A, (x):={ A1, Az, ...,

An(k)} €A such that
Z g\ = Z g\= 1 in K.
XeA AEAL ()

In particular, for K :=suppyy , we have p=p\=0in U\ K and p=p-1=3 o PN =
Z/\GAn( ) P in K. Hence, overall,

p(x) = Z ea(z) = Z oa(z) for every z €U .

By the linearity of 7" we then have

(Ty)= > (T,p2)=0.

)\EA"(K>

By the arbitrariness of ¢ € D(U) we get (T', ¢) for every ¢ € D(U). This concludes the proof. HE=H

8.34. Remark. When Q is a o-locally compact Hausdorff space, the localization principle can be
proved in the context of Radon measures. However, since open subsets of o-locally compact spaces
are not necessarily o-compact®? (in fact, not necessarily paracompact) one has to be more careful
at one point. Precisely, since U := U)oU), is an open subset of the o-locally compact Hausdorff
space Q, we cannot consider a C¥ partition of unity of U subordinated to the open cover (Uy)ea.
We have to use a simple trick. For every p € K(U) we set K :=suppyp and we complete the open
covering (Uy)aen of U to an open covering (V,)acr of Q by adding the open set Q\ K to (Uy)xea.
Now we are entitled to consider a C” partition of unity (g, )aecr of Q subordinated to the open cover
(Va)aer. For any a €T we set ¢, := go ¢ so that suppq g, is compact and included in V,, N K. After
that, there exist n(/) € N and [},(x):= {1, a2, ..., a;,k)} C T such that

Zgaz Z go=1 in K.

acl aGAn(K)
Moreover, since o=, =0in U\ K and p=¢-1=3" _, o, PIa= Y onch o P in K, we have that
p(z) = Z Pa(T) = Z ©a(T)  for every z€U .
ael’ aEAn(K)

By the linearity of 7" we then have (T', p) =3 . o (T'y o) =0, and by the arbitrariness of

e X(U) we get (T, p) for every ¢ € K(U). This concludes the proof.
By the localization principle, we obtain the existence of the domain of nullity of a distribution.

8.35. Corollary. (DOMAIN OF NULLITY) The domain of nullity Uq(T') of a distribution T exists
and 1s unique.

8.3. However, in metric spaces, open subsets of o-locally compact space are still o-compact. Indeed, in a metric space every
open set is an F,, (because every closed set F' is a Gs: F =N;A; where Aj={zcQud(z,F) < %}) Thus, for every open subset
A of Q, there exists a sequence (F});cn of closed subsets of Q such that a A=U;enFj. But each F} is o-compact (because this

is a weakly hereditary property) and, therefore, A can be expressed as a countable union of countably many compact subsets.

In general, without some extra condition on Q (like the metrizability condition), the result does not hold.
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ProoF. The existence is a consequence of the localization principle because if 7" is null on a family
of open subsets of Q then 7" is null also on their union. After that, uniqueness is a consequence of
the fact that any maximum (here with respect to the set inclusion order relation) is unique. HE=H

8.36. Corollary. (LOCALIZATION PRINCIPLE, II) Let Q be an open subset of RY, (U)\)rca a family
of open subsets of Q. Let T1,T, be two distributions on Q such that T1|o,=15|v, for every A€ A,
then Ty =T5 on the union U :=UycpUy, i.e., Ti|lv = Ta|v.

ProoF. It is sufficient to note that, by hypotheses, (71 — 13)|y, =0 for every A € A, so that, by the
localization principle, (71 — 73)|y=0. EEEE

8.37. Remark. The same results hold for Radon measures on o-locally compact Hausdorff spaces
(cf. Remark 8.34).

8.4.3. The support of a distribution

The definition of support of a distribution mimics the one given for continuous functions in Defin-
ition 6.15.

8.38. Definition. We call support of a distribution 7' € D’(Q2) the complement, relative to Q, of its
domain of nullity: suppq 7 :=Q\ Uq(T'). It is clear that suppg 7" is closed in the relative topology
of Q. =

Example 8.39. (DIRAC § DISTRIBUTION) If §, is the Dirac distribution centered at a € Q C RY,
then supp ={a}.

Example 8.40. (REGULAR DISTRIBUTIONS) If f € L .(Q) and T} € D'(Q) is the regular distribution
associated with f, then suppo7} coincides with the essential support of f, denoted by esssuppgq f.
We recall that the essential support of a function in Llloc(Q) is the complement of the essential
domain of nullity ess Ug( f)of f, which is defined as the biggest open subset of Q on which f is a.e.
equal to zero. Note that the existence of such a biggest open subset (i.e., of ess Ug( f)) is guaranteed
by the localization principle (Lemma 8.33). Indeed, if (U))xen is a family of open subsets of Q such
that 7}|,=0 then, by Theorem 8.24, we know that f is a.e. equal to zero on each U), but we cannot
infer from this that f =0 a.e. in U:=U, U, (because A can be, in terms of cardinality, more than
countable). However, as already said, the localization principle assures that this indeed the case.

For completeness, we also present a different argument that shows ess Uq( f) is well-defined. The
key is that RN (and therefore Q) is a second-countable space. Indeed, let (B,,),en be a countable
base of 2, and denote by (U,),en the subsequence of (B,,),en consisting of those basis sets such that
flv,=0 a.e. in U,. We want to show that Uy f =U,,cnU,. For that, we observe that U, cnU, is an
open set and f=0 a.e. on U,,cnU,, because U, nU, is a countable union of open sets. Moreover,
U, enU, is the biggest open set where f is a.e. equal to zero because if V' is any other open set
where f is a.e. equal to zero, then necessarily V CU,,cnU,, as V would be expressible as a countable
union of elements of (B,,),en where [ is a.e. equal to zero.

8.41. Remark. Note that the notion of essential support is the natural notion of support in Lebesgue
spaces. Indeed, if xg € Llloc([R) is the indicator function of the rationals, and 7, the corresponding
regular distribution, then suppr xo = R (because Ur(xq) = () whereas ess suppq xo = suppaly, =0
(because ess Ug(f) = Ua(Tf) = R). In fact, the regular distribution 7}, is nothing but the null
functional.
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Example 8.42. (CONTINUOUS FUNCTIONS) If f € C(Q) N Li,(R) then

suppq f = ess suppq f = suppq 1.

In other words, for a regular distribution that admits a continuous representative, all three notions
of support are the same.

Example 8.43. (RADON MEASURES) f 1 is a Radon measure on the o-locally compact Hausdorff
space €2, we can define its restriction to an open subset U of Q by setting

(lus w) =(us 0) VoeX(U).

Therefore, one can also define the support and the domain of nullity of a Radon measure in exactly
the same way we did for elements of D’(Q). If Q is an open subset of R, then it is simple to check
that the distribution associated with 1|y coincides with the restriction to U of the distribution
associated with 1 (to see this one uses the density of C2°(Q) in K(U)). Therefore, when Q C RY,
the support of a Radon measure coincides with the support of the corresponding distribution (cf. the
Consistency Theorem 7.41)

An immediate consequence of the definition of support is stated in the following result.

8.44. Proposition. If o € D(Q),T € D'(Q) and

suppg ¢ Nsuppe T =10,
then

(T, p)=0.

In particular, if ¢ is zero in a neighborhood of suppq T then (T, ) =0.

Note that the condition ¢ =0 on suppg 7" is not sufficient, in general, to conclude that (7,
¢) =0. For example, if T: ¢ € D(R) — ©'(0) then

suppr 7' = {0}.
On the other hand, if ¢ € D(R) is such that ¢(z) =2z in a neighborhood of zero, then ¢ =0 on
suppr T’ (i.e., p(0) =0) although (7', ¢) = ¢'(0) =1+0.

Roughly speaking, the reason why the previous counterexample works is that the validity of
the statement (7', ) =0 whenever ¢ =0 on suppq 7', depends on the order of the distribution 7’
with respect to the order of the zeros where ¢ =0 on suppq 7. In fact, later on, we will show the
following fundamental result.

8.45. Proposition. Let Q be an open subset of RY.

Case m € N.

Let T € (D™)(Q), ¢ € D™(Q). Assume that p € D™(Q) is such that (Pp)(z) =0 for any x €
suppa and for every multi-index B € NV having modulus |B| <m, then (T, ©) =0.

Case m = co.

Let T € D'(Q), o € D(Q). Assume that (Pp)(x) =0 for any x € suppaT and for every multi-
index B € NY, then (T, p)=0.



8.5

8.5 PRINCIPE DU RECOLLEMENT DES MORCEAUX. GLUING LEMMA. 167

Principe du recollement des morceaux. Gluing lemma.

The next result allows for a passage from locally defined distributions to globally defined ones. This
is achieved via a gluing procedure referred to as principe du recollement des morceauzr or gluing
lemma. The french name is the one used by L. Schwartz in his treatise on the theory of distributions.

8.46. Theorem. (PRINCIPE DU RECOLLEMENT DES MORCEAUX) Let Q be an open subset of RY
and (Q\)aca an open cover of Q. For every index A € A it is given a distribution Ty € D'(Q)).

Assume that the family (T)\)rca satisfies the following condition:

For every \, e A with Q\NQ, # 0, the restrictions of Ty and T), to the open set Q\NQ,
coincide. In other words, suppose that T)\|a,nq,=T)|a\nq, for every \, n €A, i.e.,
<T)\a @) — <T,u7 ‘10> VSD € Q(Q)\ﬂﬂu).
Claim: There exists, and is unique, the distribution T € D’'(Q) such that the restriction of T to
every Q) coincides with T}, i.e., such that T|q, =T\ for every A€ A, i.e., such that
<T7 90> = (T)\a S0> Vpe ®(Q/\)

Moreover:

1. If every 1)\ is of order less than or equal to k € N, then T as well is of order less than or
equal to k.

1. If every T} is a reqular distribution, then also T is a regqular distribution.

iii. If every T is C*(Q), then also T is in CF(Q).

ProoF. The niqueness of 7" follows from the localization principle (cf. Corollary 8.36). Indeed, if
T and S are such that T'|q, =7\ and S|q,=7) then T'|q,=S5|q, for every A€ A. Hence S=T.

Let us prove the existence of 7. Let (gx)rea be a C-partition of unity on Q, subordinated
to the open cover (Q))yea. The partition of unity (gy)rea induces a Dieudonné decomposition of
every ¢ € D(U). Precisely, for any A € A we set py:= grp. Clearly, one has ¢y € D(Q)) because ¢
has compact support in Q and suppg gx C Q). Recall (cf. Theorem ?7) that for any compact subset
K € Rq there exist n(K) €N and A, k)= {1, A2, ..., Ay} © A such that

ZgA= Z =1 in K.

XEA AEA(K)

In particular, for K :=suppq ¢, we get

o) = Z oa(z) for every z €Q, O = O\ (8.32)
)\GA,Z(;Q

We define the candidate distribution 7" as follows®*. For any ¢ € D(Q) we set

(Ty0):=> (Dop)= D> (Duw)= >, (D, en) (8.33)

AEA AEAL(K) AEAL (k)

This is a natural ansatz. Indeed, if a globally defined distribution 7" exists, then it must necessarily

8.4. Note that the definition of the map 7" can be equivalently stated as T: ¢ € D(Q) > > cA (T, ¢©r). The expression
in (8.33) depends on ¢, while the previous one does not. However, in writing (8.33) we are stressing that for any ¢ € D(Q) the

sum | cA (T, px) reduces to a finite sum, whose number of nonvanishing terms depend on the support of ¢.
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satisfy (8.33).
Note that (8.33) defines a linear form 7" on D(Q2). Moreover, for any compact subset K € Rq
of Q, the restriction of 7" to Dk (Q) is continuous. Indeed, for every A € A the map
0 EeDK(Q)— pr:=gpp e D(Q)

is a continuous map from Dy (Q) to D(Q) (cf. Proposition 6.63). Therefore, also the map ¢ €
Dx(Q)— (T}, ¢r) is continuous on D () because a composition of two continuous functions. Since
(T, ¢) is a finite sum of linear and continuous functionals, 7" is a linear and continuous functional
on Dy (Q). By the arbitrariness of the compact set K € Rq, we infer that 7" is linear and continuous
on D(Q) and, therefore, a distribution on Q.

Note that all that we have derived, in principle, depends on the Dieudonné decomposition of
. But as we are going to show, the restriction of 7" to Q,, coincide with 7}, for every pc A. After
that, the localization principle implies that the distribution 7" is unique and, therefore, independent
from any specific C'*°-partition of unity used to define it.

We have to show that for every ;€ A one has

<Ta S0> = <Tua SD> pe ®(Q#)'
Let ¢ € D(Q,) with ;1€ A. Then gy € D(Q,NQ)) whenever Q,NQy# (). By hypothesis, if Q,, N #
(), then 7}, and T coincide on ©, N Q. In other words,
(T, ogx) = (D, 0gr) Vi, A€ Az, N #0. (8.34)

By (8.33) and (8.34) it follows that (we set K :=suppq ¢ C )

3 (8.34) (8.32) (8.32)
)Y S e Y S (B <Tw ) w> 21, 0).

AeAn(K) )\EA"(K) )\EA"(K>

This concludes the proof for the case in which every T} is in D'(Q)).

Proof of i. Now, if every T} is continuous on CS°(Q,) for the topology of D*(Q,), it is easy to check,

by following exactly the same lines, that 7" defined by (8.33) is continuous on C2°(Q) for the topology
of D*(Q).

Proof of ii. If (fx)xea are in Lio(Q)), then, with T} := T}, satisfying the hypotheses of the theorem,
for every ¢ € D(Q) we have (with K :=suppq ¢)

(T, ¢) o2 Z (T3, o) Z oa(z)dz

/\EAn(K) AEA, n(K) QA
= @) ga(z)p(x)dz = (@) gr(z) |o(z)dx
/\GAZ<K / /Q</\€AZMK) )

_ A();\f)\ )()dx.

Note that, since suppqey C €2\, one can replace the integrals on ) with integrals extended to the
whole of Q. Also, it is important to write down the last equality because we want the term in
parenthesis to not depend on the test function. After that, the unique distribution 7" obtained via
gluing, is nothing but the regular distribution associated with

= Z H(z)gn(z), €.

AEA
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Proof of ii. Finally, if ( f\)xea is a family in C*(Q) then f(z)= Y aeafa(@)ga(z) is in C*(Q) because
for every = € Q the previous sum consists of finitely many terms. EETE

Example 8.47. (APPLICATION TO SOBOLEV SPACES) Let us assume that Q is an open subset of
R” (bounded or not). The Sobolev space I/Vllg(;p (Q) is defined by
WEP(Q) ={ue LL (Q) = u|yeWrP(U) for all U €Q}.

oc loc

A sequence (u,),en converges to u in I/Vllg‘tp(Q) if for every U € Q one has |[us — w|yx.n() — 0 when
n— 0.

Let (Q\)xea be an open cover of Q made by bounded sets. Let us assume that uy € W*P(Q))
for every A € A and that if ), N, # () then uy=wu, on the intersection. Then there exists a unique
regular distribution u € I/Vlfjép () such that the restriction of u to every Qy coincides with u,. In fact,

u(x) = Z ux(x)ga(z), z€Q

AEA

with (gx)rea an arbitrary C°°-partition of unity on Q subordinated to the open cover (Q))xea.

Example 8.48. (SIMPLE AND DOUBLE LAYER DISTRIBUTIONS) Let ¥ be a C''-hypersurface of R”.
Let (94,3, ®;)ics an atlas of ¥ and o; the positive Radon measure induced on ¥; by the Lebesgue
measure on Q; C RV 1 Tt can be sown that if ;N 2 + () the restrictions of o; and oj to X; N3,
coincide. By the principe du recollement des morceaux there exists a unique positive Radon measure
o on X whose restriction to ¥; coincide with o;. It is possible to show that ¢ does not depend on the
chosen atlas on Y. The measure o so built is called the measure induced on ¥ from the Lebesgue
measure on RY ~!. If ¢ is a bounded measure, then (1) is called the area of ¥.. For any o-integrable

a(p) :/Epda

After that, for any o-integrable function p the linear form

function p one sets

p € X(RN) = a(pp) Z/Esopda

is continuous on K (R™). Therefore, this form is a distribution on R" and is called distribution of
simple layer, of density p, and concentrated on X.. It is simple to show that such a distribution is
a Radon measure whose support is contained in 3. If the hypersurface ¥ is oriented by the unit
normal field v, then the linear form

o€ DURN) s 0( ) /Z dyppdo

is continuous on D' (RY). Therefore, this form is a distribution of order less than or equal to 1 and
is called the distribution of double layer, of density p, and concentrated on 3.






DERIVATIVES OF DISTRIBUTIONS

9.1 | Definition and first consequences

9.1. Definition. Let Q be an open subset of R"Y. Let '€ D’(Q) and o€ NV a multi-index. We define
the partial derivative of index a of the distribution 7" as the map

D(Q) 3 ¢ (DT, @)= (—1)I*T, D).

We collect in the next proposition the first main properties of the derivative operator.

9.2. Proposition. Let Q be an open subset of RY. Let T € D'(Q) and o€ NV a multi-index. The
following assertions hold:

i. D*T is a distribution on Q and the map D*:T — D*T is linear and continuous from D'(Q)
into D'(Q) (no matter if we endow the space of distributions with the weak-dual topology
or with the strong-dual topology). More precisely, for any k € N the map D* is a linear and
continuous operator from (D¥)'(Q) into (DFH1N/(Q).

i. If S:=T|y is the restriction of T to an open subset U of Q then for any multi-index o€ NV
the distributions D*S s the restriction of D*T to U. In symbols:

DT |v) = (D*T)|v.
1t follows that

suppaD*T C suppaT'.

ii5. For multi-indices o and B in N” the theorem on the symmetry of partial derivatives holds:
DB =DDF T =DED*T VT € D'(Q).
. For any T € D'(Q) and f € E(Q) one has the Leibniz formula

D(fT) = [; B'(+lﬁ)' DB DB T

9.3. Corollary. Let Q be an open subset of RY. Let (T})jen a sequence of distributions. Assume that
the series ZJEN T} converges towards a distribution T'c D'(Q) with respect to the weak-dual topology
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(resp. the strong-dual topology) then for any multi-inder o€ NV the series ZJEN D*T} converge
towards D*T € D'(Q) in the weak-dual topology (resp. in the strong-dual topology). In symbols

Y T,=T inDLQ) = ) DT;—D*T in Dy(Q)
jEN jEN
and

> T=T inDyQ) = > D*I;—»D*T in D)(Q)
jEN jEN

where the subscripts o and b stands for the weak and strong dual topology on D’'(Q).

PrRoOOF. From the linearity and the (sequentially) continuity of the map operator D* proved in
Proposition 9.2 at comma (i), we have that 7'=lim; Zj e[NiTJ' and therefore

lim (D“Z Tj>

1—00 :
JEN;

lim (Z D“Tj>

D*T

i 4
1—» 00 JeN,

S oo

JEN

both if the limit is taken with respect to the weak-dual topology or with respect to the strong-dual
topology. EECE

Example 9.4. We denote by RY the hyperoctant {z = (z1, ..., zy) € RN 2, > 0}. The Heaviside
function H:RY — R is nothing but the characteristic function of [Rf . This is a locally integrable
function. We want to compute the gradient of the regular distribution 7};. For every ¢ € D(RY RY),
we have

(VIu,p) = —ANH(x) dive(z) dzx
= —/Ndivcp(x) dz
R

_ _/{Mq,(g) ‘n(o)do.

with 7 the exterior unit normal to dRY. Note that, if we denote by e;-:= {x = (z1,...,ay) ERY = 2=
0} the face of RY perpendicular to ¢;, then

N

(VT ) =3 </L<p(0)-eida>. (9.1)

i=1 €

Eventually, note that for N =1, we obtain e;- = {0} so that for every ¢ € D(R,R)

(T ) = [ olo) dr=4(0),

8N
Next, let us compute mTH‘ We have, for every p € D(RY R)

oN oN
<0:E1~~-0xNTH’ S0> - Aw le---(?m]vgp(x) d
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+o0 +oo ptoo (c)N ded d
Y — x x x Y x
/0 /0 le---GmNSD( ) day da N

00 00 (c)N
/ ms&(&xz,---,@w) dzg--day
0

Il
55— 5>—~

0).

Hence
aN

701‘1-"(91‘]\71}{ = 5

Therefore, the derivative of the Heaviside function H:R"™ — R is the Dirac delta distribution centered
at the origin.

The next example should be compared with the Cauchy principal value distribution vpé
described in Section 8.4.1.

Example 9.5. (DERIVATIVE OF |z|™%, —oo <a <1) In R the real-valued function wu,: x> |z|™
with —oo < a < 1isin L{,.(R) and therefore it is in D’(R). Let us consider its derivative in D’(R),
that is the linear and continuous functional on D(R) defined by

ugche‘D([R)H—/ |z |0, p(z) d. (9.2)
R

We want to find another representation of u/,. It is convenient to set, for any r € Ry, K, :=[—r,r].
We consider a generic ¢ € D(R) and denote by K, := [—a, a] a compact subset of R such that

K, D suppr ¢. Clearly, for ¢ sufficiently small (precisely when 0 < e <a) K,\K.# () and we have
(as Ue € Llloc([R))

(uly, p) = — lim |z| =% 0, p(z) d. (9.3)
e=0" JK \ K,

On the other hand, taking into accoung that ¢(a) = ¢(—a) =0 because K, 2O suppr ¢, for any
0 <e <a we have (note that K,\K.=[—a,—¢|U][e,a]

/ ]9, () dz =/ Ou(|x| = () dar — / Ba(z] ) () d
Ko\K- Ko\K- Ka\Kc

e[~ ((—2) — le)) — / Ou(||*) () d. (9.4)

K \K.

Summarizing, for any 0 <& < a we have

/ O[]~ o) d = |~ (9(—2) — (&) - / ]2 By () da. (9.5)
K, \K.

K \K.

Since ¢ is differentiable, we have lim._, || (¢(—¢) — ¢(g)) =0 for any —oo < o < 1. Therefore,
passing to the limit for e — 0" in (9.5) we infer that

(ua, ) = lim Ou(|z[~)p(x) dz
e=0" JK\K.
. x

e—=0T JK\K.

—a<vp<’x’§+a>, <p>. (9.6)
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By the arbitrariness of ¢ € D(R) we get

X

The previous distribution is an extension of the regular distribution in D’(R\ {0}) associated with

the classical derivative of |z|~®.



